IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v10y2019i2d10.1007_s13198-019-00758-0.html
   My bibliography  Save this article

AHP-Entropy based priority assessment of factors to reduce aviation fuel consumption

Author

Listed:
  • Jagroop Singh

    (National Institute of Technology)

  • Somesh Kumar Sharma

    (National Institute of Technology)

  • Rajnish Srivastava

    (MNIT)

Abstract

ABSTRACT With the projected air traffic growth, aviation fuel needs will grow by 3% globally per year. Considering this, aviation industry has set ambitious goals to enhance its fuel efficiency. This study presents an integrated framework for aviation fuel consumption reduction, which will also limit its CO2 emissions. Further, this research aims to categorize influential factors and examine their relative importance for fuel-efficient aviation. This study’s theoretical framework combines and reconciles eight major areas: alternative jet fuels, aviation infrastructure, aircraft operations, socio-ecopolitical environment, aircraft design, technology, environmental uncertainty, and strategic changes. In all, 37 sub-factors were identified. The priority ratings of these sub-factors with respect to ‘aviation fuel consumption reduction’ objective is measured by hybrid analytical hierarchy process-entropy method, using pair-wise comparison matrices. The findings attributed the highest importance to ‘technological innovations’, followed by ‘aircraft design’ and ‘aircraft operations’ for saving aviation fuel. Based on the obtained ranking ‘engine design’, ‘laminar flow technology’, and ‘air traffic management technology’ emerged as the three most important sub-factors. The robustness of priority rankings has been tested using sensitivity analysis. This study shows the path for continuous improvement in aviation fuel efficiency by directing efforts and investments on highly important factors.

Suggested Citation

  • Jagroop Singh & Somesh Kumar Sharma & Rajnish Srivastava, 2019. "AHP-Entropy based priority assessment of factors to reduce aviation fuel consumption," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(2), pages 212-227, April.
  • Handle: RePEc:spr:ijsaem:v:10:y:2019:i:2:d:10.1007_s13198-019-00758-0
    DOI: 10.1007/s13198-019-00758-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-019-00758-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-019-00758-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eshtaiwi, Mohamed & Badi, Ibrahim & Abdulshahed, Ali & Erkan, Turan Erman, 2018. "Determination of key performance indicators for measuring airport success: A case study in Libya," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 28-34.
    2. Hongli Zhao & Ning Zhang & Yu Guan, 2018. "Safety Assessment Model for Dangerous Goods Transport by Air Carrier," Sustainability, MDPI, vol. 10(5), pages 1-16, April.
    3. McManners, Peter John, 2016. "Developing policy integrating sustainability: A case study into aviation," Environmental Science & Policy, Elsevier, vol. 57(C), pages 86-92.
    4. Jaeger, William K. & Egelkraut, Thorsten M., 2011. "Biofuel economics in a setting of multiple objectives and unintended consequences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4320-4333.
    5. Cansino, José M. & Román, Rocío, 2017. "Energy efficiency improvements in air traffic: The case of Airbus A320 in Spain," Energy Policy, Elsevier, vol. 101(C), pages 109-122.
    6. Sgouridis, Sgouris & Bonnefoy, Philippe A. & Hansman, R. John, 2011. "Air transportation in a carbon constrained world: Long-term dynamics of policies and strategies for mitigating the carbon footprint of commercial aviation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1077-1091.
    7. Theo Dijkstra, 2013. "On the extraction of weights from pairwise comparison matrices," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(1), pages 103-123, January.
    8. Park, Yongha & O’Kelly, Morton E., 2014. "Fuel burn rates of commercial passenger aircraft: variations by seat configuration and stage distance," Journal of Transport Geography, Elsevier, vol. 41(C), pages 137-147.
    9. Sharmistha Roy & Prasant Kumar Pattnaik & Rajib Mall, 2017. "Quality assurance of academic websites using usability testing: an experimental study with AHP," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 1-11, March.
    10. William K. Jaeger & Thorsten M. Egelkraut, 2011. "Biofuel Economics in a Setting of Multiple Objectives & Unintended Consequences," Working Papers 2011.37, Fondazione Eni Enrico Mattei.
    11. De Poret, M. & O'Connell, J.F. & Warnock-Smith, D., 2015. "The economic viability of long-haul low cost operations: Evidence from the transatlantic market," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 272-281.
    12. Staples, Mark D. & Malina, Robert & Suresh, Pooja & Hileman, James I. & Barrett, Steven R.H., 2018. "Aviation CO2 emissions reductions from the use of alternative jet fuels," Energy Policy, Elsevier, vol. 114(C), pages 342-354.
    13. Vaaben, Bo & Larsen, Jesper, 2015. "Mitigation of airspace congestion impact on airline networks," Journal of Air Transport Management, Elsevier, vol. 47(C), pages 54-65.
    14. Jaeger, William K. & Egelkraut, Thorsten M., 2011. "Biofuel Economics in a Setting of Multiple Objectives & Unintended Consequences," Energy: Resources and Markets 108203, Fondazione Eni Enrico Mattei (FEEM).
    15. Nava-Gaxiola, Cesar A. & Barrado, Cristina, 2016. "Performance measures of the SESAR Southwest functional airspace block," Journal of Air Transport Management, Elsevier, vol. 50(C), pages 21-29.
    16. Brueckner, Jan K. & Abreu, Chrystyane, 2017. "Airline fuel usage and carbon emissions: Determining factors," Journal of Air Transport Management, Elsevier, vol. 62(C), pages 10-17.
    17. Guangdong Wu , & Kaifeng Duan & Jian Zuo & Xianbo Zhao & Daizhong Tang, 2017. "Integrated Sustainability Assessment of Public Rental Housing Community Based on a Hybrid Method of AHP-Entropy Weight and Cloud Model," Sustainability, MDPI, vol. 9(4), pages 1-25, April.
    18. Yilmaz, Nadir & Atmanli, Alpaslan, 2017. "Sustainable alternative fuels in aviation," Energy, Elsevier, vol. 140(P2), pages 1378-1386.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lourdes Rivero Gutiérrez & María Auxiliadora De Vicente Oliva & Alberto Romero-Ania, 2021. "Managing Sustainable Urban Public Transport Systems: An AHP Multicriteria Decision Model," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    2. Mehdi Salimi & Mahboubeh Khodaparast, 2019. "Providing a combined model of fuzzy AHP and numerical taxonomy analysis for sport organizational ranking and performance appraisal," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1133-1144, October.
    3. Sandeep Singh & Jaimal Singh Khamba & Davinder Singh, 2023. "Study of energy-efficient attributes of overall equipment effectiveness in Indian sugar mill industries through analytical hierarchy process (AHP)," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 374-384, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    2. Kim, Yohan & Lee, Joosung & Ahn, Jaemyung, 2019. "Innovation towards sustainable technologies: A socio-technical perspective on accelerating transition to aviation biofuel," Technological Forecasting and Social Change, Elsevier, vol. 145(C), pages 317-329.
    3. Jagroop Singh & Somesh Kumar Sharma & Rajnish Srivastava, 2018. "Managing Fuel Efficiency in the Aviation Sector: Challenges, Accomplishments and Opportunities," FIIB Business Review, , vol. 7(4), pages 244-251, December.
    4. Noel, Michael D. & Roach, Travis, 2017. "Marginal reductions in vehicle emissions under a dual-blend ethanol mandate: Evidence from a natural experiment," Energy Economics, Elsevier, vol. 64(C), pages 45-54.
    5. Nair, Sujith & Paulose, Hanna, 2014. "Emergence of green business models: The case of algae biofuel for aviation," Energy Policy, Elsevier, vol. 65(C), pages 175-184.
    6. Iyabo Adeola Olanrele & Adedoyin I. Lawal & Ezekiel Oseni & Ahmed Oluwatobi Adekunle & Bukola, B. Lawal-Adedoyin & Crystal O. Elleke & Racheal Ojeka-John & Henry Nweke-Love, 2020. "Accessing the Impacts of Contemporary Development in Biofuel on Agriculture, Energy and Domestic Economy: Evidence from Nigeria," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 469-478.
    7. Das, Deepjyoti & Sharma, Somesh Kumar & Parti, Raman & Singh, Jagroop, 2016. "Analyzing the effect of aviation infrastructure over aviation fuel consumption reduction," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 89-100.
    8. Giovanni Alessandro Cappelli & Fabrizio Ginaldi & Davide Fanchini & Sebastiano Andrea Corinzia & Salvatore Luciano Cosentino & Enrico Ceotto, 2021. "Model-Based Assessment of Giant Reed ( Arundo donax L.) Energy Yield in the Form of Diverse Biofuels in Marginal Areas of Italy," Land, MDPI, vol. 10(6), pages 1-24, May.
    9. Rajagopal, D. & Plevin, R. & Hochman, G. & Zilberman, D., 2015. "Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards," Energy Economics, Elsevier, vol. 49(C), pages 359-369.
    10. Ji, Xi & Long, Xianling, 2016. "A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 41-52.
    11. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    12. Trumbo, Jennifer L. & Tonn, Bruce E., 2016. "Biofuels: A sustainable choice for the United States' energy future?," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 147-161.
    13. Moschini, GianCarlo & Cui, Jingbo & Lapan, Harvey E., 2012. "Economics of Biofuels: An Overview of Policies, Impacts and Prospects," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(3), pages 1-28, December.
    14. Chiambaretto, Paul & Mayenc, Elodie & Chappert, Hervé & Engsig, Juliane & Fernandez, Anne-Sophie & Le Roy, Frédéric, 2021. "Where does flygskam come from? The role of citizens’ lack of knowledge of the environmental impact of air transport in explaining the development of flight shame," Journal of Air Transport Management, Elsevier, vol. 93(C).
    15. Zhao, Qiankun & Cai, Ximing & Mischo, William & Ma, Liyuan, 2020. "How do the research and public communities view biofuel development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    16. Pierluigi Coppola & Diego Deponte & Alessandro Vacca & Federico Messa & Fulvio Silvestri, 2022. "Multi-Dimensional Cost-Effectiveness Analysis for Prioritizing Railway Station Investments: A General Framework with an Application to the Italian Case Study," Sustainability, MDPI, vol. 14(9), pages 1-18, April.
    17. Stefan Walter, 2018. "The Regional Impact of Biofuel Economics," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 12(3), pages 369-386, August.
    18. Janda, Karel & Kristoufek, Ladislav & Zilberman, David, "undated". "Biofuels: review of policies and impacts," CUDARE Working Papers 120415, University of California, Berkeley, Department of Agricultural and Resource Economics.
    19. Živković, Snežana B. & Veljković, Milan V. & Banković-Ilić, Ivana B. & Krstić, Ivan M. & Konstantinović, Sandra S. & Ilić, Slavica B. & Avramović, Jelena M. & Stamenković, Olivera S. & Veljković, Vlad, 2017. "Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 222-247.
    20. Ayesha Mushtaq & Muhammad Asif Hanif & Muhammad Zahid & Umer Rashid & Zahid Mushtaq & Muhammad Zubair & Bryan R. Moser & Fahad A. Alharthi, 2021. "Production and Evaluation of Fractionated Tamarind Seed Oil Methyl Esters as a New Source of Biodiesel," Energies, MDPI, vol. 14(21), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:10:y:2019:i:2:d:10.1007_s13198-019-00758-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.