IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v145y2019icp317-329.html
   My bibliography  Save this article

Innovation towards sustainable technologies: A socio-technical perspective on accelerating transition to aviation biofuel

Author

Listed:
  • Kim, Yohan
  • Lee, Joosung
  • Ahn, Jaemyung

Abstract

The global market based measure (MBM) for international flight emissions is poised for launch in 2020, creating additional pressure for improvements of aviation environmental performance. Due to high R&D costs and long lifecycle of aircrafts, drop-in biofuels stand as a promising solution for addressing aviation's environmental sustainability. The transition to commercial aviation biofuels remains stagnant, however, despite the continuing progress made in overcoming technological and economic challenges of aviation biofuels. This paper investigates the key barriers and opportunities for biofuels transition from a comprehensive socio-technical standpoint. A multi-level perspective (MLP) system dynamics model of aviation biofuel industry is developed to investigate the adoption process. We assess the interactive mechanisms between existing regimes, landscape pressures, and niche innovations, and propose four possible scenarios of aviation biofuel adoption. From this, we provide policy recommendations and industry level strategies for accelerating the transition to aviation biofuels that balance environmental sustainability and economic benefits.

Suggested Citation

  • Kim, Yohan & Lee, Joosung & Ahn, Jaemyung, 2019. "Innovation towards sustainable technologies: A socio-technical perspective on accelerating transition to aviation biofuel," Technological Forecasting and Social Change, Elsevier, vol. 145(C), pages 317-329.
  • Handle: RePEc:eee:tefoso:v:145:y:2019:i:c:p:317-329
    DOI: 10.1016/j.techfore.2019.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S004016251730611X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2019.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nygren, Emma & Aleklett, Kjell & Höök, Mikael, 2009. "Aviation fuel and future oil production scenarios," Energy Policy, Elsevier, vol. 37(10), pages 4003-4010, October.
    2. Neil Strachan & Will Usher, 2012. "Failure to achieve stringent carbon reduction targets in a second-best policy world," Climatic Change, Springer, vol. 113(2), pages 121-139, July.
    3. Mangoyana, Robert B. & Smith, Timothy F. & Simpson, Rodney, 2013. "A systems approach to evaluating sustainability of biofuel systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 371-380.
    4. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    5. Sgouridis, Sgouris & Bonnefoy, Philippe A. & Hansman, R. John, 2011. "Air transportation in a carbon constrained world: Long-term dynamics of policies and strategies for mitigating the carbon footprint of commercial aviation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1077-1091.
    6. David A. Carter & Daniel A. Rogers & Betty J. Simkins, 2006. "Hedging and Value in the U.S. Airline Industry," Journal of Applied Corporate Finance, Morgan Stanley, vol. 18(4), pages 21-33, September.
    7. Geels, Frank W., 2012. "A socio-technical analysis of low-carbon transitions: introducing the multi-level perspective into transport studies," Journal of Transport Geography, Elsevier, vol. 24(C), pages 471-482.
    8. Verbong, Geert & Geels, Frank, 2007. "The ongoing energy transition: Lessons from a socio-technical, multi-level analysis of the Dutch electricity system (1960-2004)," Energy Policy, Elsevier, vol. 35(2), pages 1025-1037, February.
    9. Lykotrafiti, A.A., 2012. "Innovation is in the (clean) air : The inclusion of aviation in the EU emissions trading scheme as a driver of innovation in air transport," Discussion Paper 2012-033, Tilburg University, Tilburg Law and Economic Center.
    10. Yohan Kim & Sunyoung Yun & Joosung Lee, 2014. "Can Companies Induce Sustainable Consumption? The Impact of Knowledge and Social Embeddedness on Airline Sustainability Programs in the U.S," Sustainability, MDPI, vol. 6(6), pages 1-19, May.
    11. Jaeger, William K. & Egelkraut, Thorsten M., 2011. "Biofuel Economics in a Setting of Multiple Objectives & Unintended Consequences," Energy: Resources and Markets 108203, Fondazione Eni Enrico Mattei (FEEM).
    12. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    13. Hale, Todd & Kahui, Viktoria & Farhat, Daniel, 2015. "A modified production possibility frontier for efficient forestry management under the New Zealand Emissions Trading Scheme," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(1), January.
    14. Bertram, Christoph & Johnson, Nils & Luderer, Gunnar & Riahi, Keywan & Isaac, Morna & Eom, Jiyong, 2015. "Carbon lock-in through capital stock inertia associated with weak near-term climate policies," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 62-72.
    15. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    16. David A. Carter & Daniel A. Rogers & Betty J. Simkins, 2006. "Does Hedging Affect Firm Value? Evidence from the US Airline Industry," Financial Management, Financial Management Association International, vol. 35(1), pages 53-86, March.
    17. Jaeger, William K. & Egelkraut, Thorsten M., 2011. "Biofuel economics in a setting of multiple objectives and unintended consequences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4320-4333.
    18. Todd Hale & Viktoria Kahui & Daniel Farhat, 2015. "A modified production possibility frontier for efficient forestry management under the New Zealand Emissions Trading Scheme," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(1), pages 116-132, January.
    19. Scarlat, Nicolae & Dallemand, Jean-François, 2011. "Recent developments of biofuels/bioenergy sustainability certification: A global overview," Energy Policy, Elsevier, vol. 39(3), pages 1630-1646, March.
    20. Johan Schot & Frank Geels, 2007. "Niches in evolutionary theories of technical change," Journal of Evolutionary Economics, Springer, vol. 17(5), pages 605-622, October.
    21. ., 1998. "Technological Change," Chapters, in: Heinz D. Kurz & Neri Salvadori (ed.), The Elgar Companion to Classical Economics, volume 0, chapter 127, Edward Elgar Publishing.
    22. Wiesenthal, Tobias & Leduc, Guillaume & Christidis, Panayotis & Schade, Burkhard & Pelkmans, Luc & Govaerts, Leen & Georgopoulos, Panagiotis, 2009. "Biofuel support policies in Europe: Lessons learnt for the long way ahead," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 789-800, May.
    23. Stefan Kruger Nielsen & Kenneth Karlsson, 2007. "Energy scenarios: a review of methods, uses and suggestions for improvement," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 27(3), pages 302-322.
    24. van der Laak, W.W.M. & Raven, R.P.J.M. & Verbong, G.P.J., 2007. "Strategic niche management for biofuels: Analysing past experiments for developing new biofuel policies," Energy Policy, Elsevier, vol. 35(6), pages 3213-3225, June.
    25. Mowery, David C., 2010. "Military R&D and Innovation," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1219-1256, Elsevier.
    26. Savvanidou, Electra & Zervas, Efthimios & Tsagarakis, Konstantinos P., 2010. "Public acceptance of biofuels," Energy Policy, Elsevier, vol. 38(7), pages 3482-3488, July.
    27. William K. Jaeger & Thorsten M. Egelkraut, 2011. "Biofuel Economics in a Setting of Multiple Objectives & Unintended Consequences," Working Papers 2011.37, Fondazione Eni Enrico Mattei.
    28. Delshad, Ashlie B. & Raymond, Leigh & Sawicki, Vanessa & Wegener, Duane T., 2010. "Public attitudes toward political and technological options for biofuels," Energy Policy, Elsevier, vol. 38(7), pages 3414-3425, July.
    29. van Eijck, Janske & Romijn, Henny, 2008. "Prospects for Jatropha biofuels in Tanzania: An analysis with Strategic Niche Management," Energy Policy, Elsevier, vol. 36(1), pages 311-325, January.
    30. Forsyth, Peter, 2007. "The impacts of emerging aviation trends on airport infrastructure," Journal of Air Transport Management, Elsevier, vol. 13(1), pages 45-52.
    31. Hughes, Nick & Strachan, Neil, 2010. "Methodological review of UK and international low carbon scenarios," Energy Policy, Elsevier, vol. 38(10), pages 6056-6065, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lai, Y.Y. & Christley, E. & Kulanovic, A. & Teng, C.C. & Björklund, A. & Nordensvärd, J. & Karakaya, E. & Urban, F., 2022. "Analysing the opportunities and challenges for mitigating the climate impact of aviation: A narrative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Genovaitė Liobikienė & Astrida Miceikienė, 2023. "Contribution of the European Bioeconomy Strategy to the Green Deal Policy: Challenges and Opportunities in Implementing These Policies," Sustainability, MDPI, vol. 15(9), pages 1-14, April.
    3. Svetlana Proskurina & Clara Mendoza-Martinez, 2023. "Expectations for Bioenergy Considering Carbon Neutrality Targets in the EU," Energies, MDPI, vol. 16(14), pages 1-16, July.
    4. Nikas, A. & Koasidis, K. & Köberle, A.C. & Kourtesi, G. & Doukas, H., 2022. "A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Qinglong Shao & Jiaying Li & Lingling Zhao, 2019. "A Four-Dimensional Evaluation of the Urban Comprehensive Carrying Capacity of the Yangtze River Delta, China," Sustainability, MDPI, vol. 11(23), pages 1-15, December.
    6. Yuho Shimizu & Shin Osaki & Takaaki Hashimoto & Kaori Karasawa, 2021. "The Social Acceptance of Collecting and Utilizing Personal Information in Smart Cities," Sustainability, MDPI, vol. 13(16), pages 1-10, August.
    7. Allan Dahl Andersen & Tuukka Mäkitie & Markus Steen & Iris Wanzenböck, 2024. "Integrating industrial transformation and sustainability transitions research through a multi-sectoral perspective," Working Papers on Innovation Studies 20240206, Centre for Technology, Innovation and Culture, University of Oslo.
    8. Mäkitie, Tuukka & Hanson, Jens & Steen, Markus & Hansen, Teis & Andersen, Allan Dahl, 2022. "Complementarity formation mechanisms in technology value chains," Research Policy, Elsevier, vol. 51(7).
    9. Medina-Molina, Cayetano & Pérez-Macías, Noemí & Fernández-Fernádez, José Luis, 2023. "The use of micromobility in different contexts. An explanation through the multilevel perspective and QCA," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    10. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    11. Befort, N., 2020. "Going beyond definitions to understand tensions within the bioeconomy: The contribution of sociotechnical regimes to contested fields," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    12. Martinez-Valencia, Lina & Garcia-Perez, Manuel & Wolcott, Michael P., 2021. "Supply chain configuration of sustainable aviation fuel: Review, challenges, and pathways for including environmental and social benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Yuho Shimizu & Shin Osaki & Takaaki Hashimoto & Kaori Karasawa, 2021. "How Do People View Various Kinds of Smart City Services? Focus on the Acquisition of Personal Information," Sustainability, MDPI, vol. 13(19), pages 1-10, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Svensson, Oscar & Nikoleris, Alexandra, 2018. "Structure reconsidered: Towards new foundations of explanatory transitions theory," Research Policy, Elsevier, vol. 47(2), pages 462-473.
    2. Barbanente, Angela & Grassini, Laura, 2022. "Fostering transitions in landscape policies: A multi-level perspective," Land Use Policy, Elsevier, vol. 112(C).
    3. Nair, Sujith & Paulose, Hanna, 2014. "Emergence of green business models: The case of algae biofuel for aviation," Energy Policy, Elsevier, vol. 65(C), pages 175-184.
    4. Canitez, Fatih, 2019. "Pathways to sustainable urban mobility in developing megacities: A socio-technical transition perspective," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 319-329.
    5. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    6. Moradi, Afsaneh & Vagnoni, Emidia, 2018. "A multi-level perspective analysis of urban mobility system dynamics: What are the future transition pathways?," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 231-243.
    7. Barton, John & Davies, Lloyd & Dooley, Ben & Foxon, Timothy J. & Galloway, Stuart & Hammond, Geoffrey P. & O’Grady, Áine & Robertson, Elizabeth & Thomson, Murray, 2018. "Transition pathways for a UK low-carbon electricity system: Comparing scenarios and technology implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2779-2790.
    8. Pesch, Udo, 2015. "Tracing discursive space: Agency and change in sustainability transitions," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 379-388.
    9. Zhao, Zhen-Yu & Chang, Rui-Dong & Chen, Yu-Long, 2016. "What hinder the further development of wind power in China?—A socio-technical barrier study," Energy Policy, Elsevier, vol. 88(C), pages 465-476.
    10. Sorrell, Steve, 2018. "Explaining sociotechnical transitions: A critical realist perspective," Research Policy, Elsevier, vol. 47(7), pages 1267-1282.
    11. Matschoss, Kaisa & Repo, Petteri, 2020. "Forward-looking network analysis of ongoing sustainability transitions," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    12. Hynes, Mike, 2016. "Developing (tele)work? A multi-level sociotechnical perspective of telework in Ireland," Research in Transportation Economics, Elsevier, vol. 57(C), pages 21-31.
    13. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Homes of the future: Unpacking public perceptions to power the domestic hydrogen transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    14. Child, Michael & Breyer, Christian, 2017. "Transition and transformation: A review of the concept of change in the progress towards future sustainable energy systems," Energy Policy, Elsevier, vol. 107(C), pages 11-26.
    15. Kriechbaum, Michael & Posch, Alfred & Hauswiesner, Angelika, 2021. "Hype cycles during socio-technical transitions: The dynamics of collective expectations about renewable energy in Germany," Research Policy, Elsevier, vol. 50(9).
    16. Foxon, Timothy J. & Pearson, Peter J.G. & Arapostathis, Stathis & Carlsson-Hyslop, Anna & Thornton, Judith, 2013. "Branching points for transition pathways: assessing responses of actors to challenges on pathways to a low carbon future," Energy Policy, Elsevier, vol. 52(C), pages 146-158.
    17. Kamp, Linda Manon & Bermúdez Forn, Esteban, 2016. "Ethiopia׳s emerging domestic biogas sector: Current status, bottlenecks and drivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 475-488.
    18. Sara Helen Kaweesa & Hamid El Bilali & Willibald Loiskandl, 2021. "Analysing the socio-technical transition to conservation agriculture in Uganda through the lens of the multi-level perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7606-7626, May.
    19. Thowayeb H. Hassan & Abu Elnasr E. Sobaih & Amany E. Salem, 2021. "Factors Affecting the Rate of Fuel Consumption in Aircrafts," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    20. Roesler, Tim & Hassler, Markus, 2019. "Creating niches – The role of policy for the implementation of bioenergy village cooperatives in Germany," Energy Policy, Elsevier, vol. 124(C), pages 95-101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:145:y:2019:i:c:p:317-329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.