IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i6d10.1007_s10668-021-01806-1.html
   My bibliography  Save this article

Agriculture, forestry, and environmental sustainability: the role of institutions

Author

Listed:
  • Rizwana Yasmeen

    (Panzhihua University)

  • Ihtsham Ul Haq Padda

    (Federal Urdu University of Arts Science and Technology)

  • Xing Yao

    (Southwestern University of Finance and Economics)

  • Wasi Ul Hassan Shah

    (Zhejiang Shuren University)

  • Muhammad Hafeez

    (University of Sialkot
    Beijing Wuzi University)

Abstract

Agriculture and forestry are two primary determinants of the environment, and strong institutions are crucial to moderate the outcomes of these sectors toward a sustainable environment. Therefore, this study aimed to examine the impact of agriculture and forestry on carbon emissions in light of institutional quality. Data at global and five regional levels from 1996 to 2015 were assessed using econometrics tools, namely cross-sectional tests, panel unit root tests, cointegration tests, Driscoll & Kraay, and fully modified ordinary least square regressions and causality analyses. The analysis indicates that agricultural production has a positive effect on CO2 emissions, whereas forestry has a negative impact. The direct and moderating effects of institutional quality on the CO2 emissions are positive. These results emphasize the importance of institutional excellence in the reduction in agricultural and forestry emissions. The study reveals that renewable energy consumption is crucial in improving environmental quality, whereas non-renewable energy consumption is not. Causality analysis reveals bidirectional causality between CO2 emissions and agriculture, forestry, and renewable energy. The study implies that countries should encourage renewable energy and the adoption of environment-friendly practices in agriculture. An increase in forest areas is also important for a clean environment. Nevertheless, the role of institutions for a sustainable environment cannot be underestimated.

Suggested Citation

  • Rizwana Yasmeen & Ihtsham Ul Haq Padda & Xing Yao & Wasi Ul Hassan Shah & Muhammad Hafeez, 2022. "Agriculture, forestry, and environmental sustainability: the role of institutions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8722-8746, June.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:6:d:10.1007_s10668-021-01806-1
    DOI: 10.1007/s10668-021-01806-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01806-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01806-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khan, Anwar & Chenggang, Yang & Hussain, Jamal & Kui, Zhou, 2021. "Impact of technological innovation, financial development and foreign direct investment on renewable energy, non-renewable energy and the environment in belt & Road Initiative countries," Renewable Energy, Elsevier, vol. 171(C), pages 479-491.
    2. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(1), pages 99-125.
    3. Pushak, Taras & Tiongson, Erwin R. & Varoudakis, Aristomene, 2007. "Public finance, governance, and growth in transition economies : empirical evidence from 1992-2004," Policy Research Working Paper Series 4255, The World Bank.
    4. Abid, Mehdi, 2016. "Impact of economic, financial, and institutional factors on CO2 emissions: Evidence from Sub-Saharan Africa economies," Utilities Policy, Elsevier, vol. 41(C), pages 85-94.
    5. Pedroni, Peter, 2004. "Panel Cointegration: Asymptotic And Finite Sample Properties Of Pooled Time Series Tests With An Application To The Ppp Hypothesis," Econometric Theory, Cambridge University Press, vol. 20(3), pages 597-625, June.
    6. Hashem Pesaran, M. & Yamagata, Takashi, 2008. "Testing slope homogeneity in large panels," Journal of Econometrics, Elsevier, vol. 142(1), pages 50-93, January.
    7. Athanasios Balafoutis & Bert Beck & Spyros Fountas & Jurgen Vangeyte & Tamme Van der Wal & Iria Soto & Manuel Gómez-Barbero & Andrew Barnes & Vera Eory, 2017. "Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics," Sustainability, MDPI, vol. 9(8), pages 1-28, July.
    8. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    9. Manzoor Ahmad & Zeeshan Khan & Zia Ur Rahman & Shoukat Iqbal Khattak & Zia Ullah Khan, 2021. "Can innovation shocks determine CO2 emissions (CO2e) in the OECD economies? A new perspective," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 30(1), pages 89-109, January.
    10. Joakim Westerlund, 2007. "Testing for Error Correction in Panel Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(6), pages 709-748, December.
    11. Rizov, Marian, 2008. "Institutions, reform policies, and productivity growth in agriculture: Evidence from former communist countries," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 55(4), pages 307-323.
    12. Dumitrescu, Elena-Ivona & Hurlin, Christophe, 2012. "Testing for Granger non-causality in heterogeneous panels," Economic Modelling, Elsevier, vol. 29(4), pages 1450-1460.
    13. Ben Jebli, Mehdi & Ben Youssef, Slim & Ozturk, Ilhan, 2013. "The Environmental Kuznets Curve: The Role of Renewable and Non-Renewable Energy Consumption and Trade Openness," MPRA Paper 51672, University Library of Munich, Germany.
    14. Chibueze, E. Nnaji & Jude, O. Chukwu & Nnaji Moses, 2013. "Electricity Supply, Fossil fuel Consumption, Co2 Emissions and Economic Growth: Implications and Policy Options for Sustainable Development in Nigeria," International Journal of Energy Economics and Policy, Econjournals, vol. 3(3), pages 262-271.
    15. Pesaran, M. Hashem & Vanessa Smith, L. & Yamagata, Takashi, 2013. "Panel unit root tests in the presence of a multifactor error structure," Journal of Econometrics, Elsevier, vol. 175(2), pages 94-115.
    16. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    17. Azmat Gani, 2012. "The Relationship Between Good Governance And Carbon Dioxide Emissions: Evidence From Developing Economies," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 37(1), pages 77-93, March.
    18. Deacon Robert T., 1995. "Assessing the Relationship between Government Policy and Deforestation," Journal of Environmental Economics and Management, Elsevier, vol. 28(1), pages 1-18, January.
    19. Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "CO2 emissions, nuclear energy, renewable energy and economic growth in the US," Energy Policy, Elsevier, vol. 38(6), pages 2911-2915, June.
    20. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    21. Bélaïd, Fateh & Youssef, Meriem, 2017. "Environmental degradation, renewable and non-renewable electricity consumption, and economic growth: Assessing the evidence from Algeria," Energy Policy, Elsevier, vol. 102(C), pages 277-287.
    22. Yao, Xing & Yasmeen, Rizwana & Hussain, Jamal & Hassan Shah, Wasi Ul, 2021. "The repercussions of financial development and corruption on energy efficiency and ecological footprint: Evidence from BRICS and next 11 countries," Energy, Elsevier, vol. 223(C).
    23. Mansi Wang & Noman Arshed & Mubbasher Munir & Samma Faiz Rasool & Weiwen Lin, 2021. "Investigation of the STIRPAT model of environmental quality: a case of nonlinear quantile panel data analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12217-12232, August.
    24. A. Baccini & S. J. Goetz & W. S. Walker & N. T. Laporte & M. Sun & D. Sulla-Menashe & J. Hackler & P. S. A. Beck & R. Dubayah & M. A. Friedl & S. Samanta & R. A. Houghton, 2012. "Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps," Nature Climate Change, Nature, vol. 2(3), pages 182-185, March.
    25. Kao, Chihwa, 1999. "Spurious regression and residual-based tests for cointegration in panel data," Journal of Econometrics, Elsevier, vol. 90(1), pages 1-44, May.
    26. Hubert Paluš & Ján Parobek & Martin Moravčík & Miroslav Kovalčík & Michal Dzian & Vlastimil Murgaš, 2020. "Projecting Climate Change Potential of Harvested Wood Products under Different Scenarios of Wood Production and Utilization: Study of Slovakia," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    27. Zylbersztajn, Decio, 2009. "Role of Institutions in Reshaping the Global Agricultural Landscape: Perspectives from Brazil," 2009 Conference, August 16-22, 2009, Beijing, China 53217, International Association of Agricultural Economists.
    28. Bhattarai, Madhusudan & Hammig, Michael, 2001. "Institutions and the Environmental Kuznets Curve for Deforestation: A Crosscountry Analysis for Latin America, Africa and Asia," World Development, Elsevier, vol. 29(6), pages 995-1010, June.
    29. Prosper Ebruvwiyo Edoja & Goodness C. Aye & Orefi Abu, 2016. "Dynamic relationship among CO2 emission, agricultural productivity and food security in Nigeria," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1204809-120, December.
    30. Apergis, Nicholas & Payne, James E. & Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth," Ecological Economics, Elsevier, vol. 69(11), pages 2255-2260, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aziz, Ghazala & Sarwar, Suleman & Nawaz, Kishwar & Waheed, Rida & Khan, Mohd Saeed, 2023. "Influence of tech-industry, natural resources, renewable energy and urbanization towards environment footprints: A fresh evidence of Saudi Arabia," Resources Policy, Elsevier, vol. 83(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angeliki N. Menegaki, 2019. "The ARDL Method in the Energy-Growth Nexus Field; Best Implementation Strategies," Economies, MDPI, vol. 7(4), pages 1-16, October.
    2. Yasmeen, Rizwana & Zhaohui, Cui & Hassan Shah, Wasi Ul & Kamal, Muhammad Abdul & Khan, Anwar, 2022. "Exploring the role of biomass energy consumption, ecological footprint through FDI and technological innovation in B&R economies: A simultaneous equation approach," Energy, Elsevier, vol. 244(PA).
    3. Kostakis, Ioannis & Arauzo-Carod, Josep-Maria, 2023. "The key roles of renewable energy and economic growth in disaggregated environmental degradation: Evidence from highly developed, heterogeneous and cross-correlated countries," Renewable Energy, Elsevier, vol. 206(C), pages 1315-1325.
    4. Murshed, Muntasir & Saboori, Behnaz & Madaleno, Mara & Wang, Hong & Doğan, Buhari, 2022. "Exploring the nexuses between nuclear energy, renewable energy, and carbon dioxide emissions: The role of economic complexity in the G7 countries," Renewable Energy, Elsevier, vol. 190(C), pages 664-674.
    5. Usman, Muhammad & Makhdum, Muhammad Sohail Amjad, 2021. "What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development," Renewable Energy, Elsevier, vol. 179(C), pages 12-28.
    6. Karim, Sitara & Appiah, Michael & Naeem, Muhammad Abubakr & Lucey, Brian M. & Li, Mingxing, 2022. "Modelling the role of institutional quality on carbon emissions in Sub-Saharan African countries," Renewable Energy, Elsevier, vol. 198(C), pages 213-221.
    7. Mounir Dahmani & Mohamed Mabrouki & Adel Ben Youssef, 2021. "The ICT, Financial Development, Energy Consumption and Economic Growth Nexus in MENA Countries: Panel CS-ARDL Evidence," GREDEG Working Papers 2021-46, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    8. Adebayo, Tomiwa Sunday & Onifade, Stephen Taiwo & Alola, Andrew Adewale & Muoneke, Obumneke Bob, 2022. "Does it take international integration of natural resources to ascend the ladder of environmental quality in the newly industrialized countries?," Resources Policy, Elsevier, vol. 76(C).
    9. Eberhardt, Markus & Teal, Francis, 2008. "Modeling technology and technological change in manufacturing: how do countries differ?," MPRA Paper 10690, University Library of Munich, Germany.
    10. Vo, Duc, 2019. "The Impact of Foreign Direct Investment on Environment Degradation: Evidence from Emerging Markets in Asia," MPRA Paper 103292, University Library of Munich, Germany.
    11. Dierk Herzer, 2016. "Unions and Income Inequality: A Heterogeneous Panel Co-integration and Causality Analysis," LABOUR, CEIS, vol. 30(3), pages 318-346, September.
    12. Yağmur Sağlam & Hüseyin Avni Egeli, 2018. "A Comparison of Domestic Demand and Export-led Growth Strategies for European Transition Economies," Foreign Trade Review, , vol. 53(3), pages 156-173, August.
    13. Perekunah B. Eregha & Solomon P. Nathaniel & Xuan Vinh Vo, 2023. "Economic growth, environmental regulations, energy use, and ecological footprint linkage in the Next-11 countries: Implications for environmental sustainability," Energy & Environment, , vol. 34(5), pages 1327-1347, August.
    14. Liton Chandra Voumik & Mohammad Iqbal Hossain & Md. Hasanur Rahman & Raziya Sultana & Rahi Dey & Miguel Angel Esquivias, 2023. "Impact of Renewable and Non-Renewable Energy on EKC in SAARC Countries: Augmented Mean Group Approach," Energies, MDPI, vol. 16(6), pages 1-19, March.
    15. Li, Xuelin & Yang, Lin, 2023. "Natural resources, remittances and carbon emissions: A Dutch Disease perspective with remittances for South Asia," Resources Policy, Elsevier, vol. 85(PB).
    16. Francisco García-Lillo & Eduardo Sánchez-García & Bartolomé Marco-Lajara & Pedro Seva-Larrosa, 2023. "Renewable Energies and Sustainable Development: A Bibliometric Overview," Energies, MDPI, vol. 16(3), pages 1-22, January.
    17. Abdelaziz Boukhelkhal, 2022. "Energy use, economic growth and CO2 emissions in Africa: does the environmental Kuznets curve hypothesis exist? New evidence from heterogeneous panel under cross-sectional dependence," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13083-13110, November.
    18. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    19. Anushka Verma & Arun K. Giri & Byomakesh Debata, 2023. "Does ICT diffusion reduce poverty? Evidence from SAARC countries," Poverty & Public Policy, John Wiley & Sons, vol. 15(1), pages 8-28, March.
    20. Muhammad Usman & Atif Jahanger & Muhammad Sohail Amjad Makhdum & Magdalena Radulescu & Daniel Balsalobre-Lorente & Elena Jianu, 2022. "An Empirical Investigation of Ecological Footprint Using Nuclear Energy, Industrialization, Fossil Fuels and Foreign Direct Investment," Energies, MDPI, vol. 15(17), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:6:d:10.1007_s10668-021-01806-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.