IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i7d10.1007_s10668-020-01049-6.html
   My bibliography  Save this article

Does adoption of climate-smart agriculture (CSA) practices improve farmers’ crop income? Assessing the determinants and its impacts in Punjab province, Pakistan

Author

Listed:
  • Asif Sardar

    (Federal Urdu University of Arts, Science and Technology
    Ataturk University)

  • Adiqa K. Kiani

    (Federal Urdu University of Arts, Science and Technology)

  • Yasemin Kuslu

    (Ataturk University)

Abstract

The agriculture sector, particularly in developing countries, is the more victim of the impacts of climate change due to less adaptation. The low response to the adoption of climate-smart agriculture (CSA) practices raises questions about the factors influencing adaptation determinants. Therefore, the present study is designed to explore the adoption of CSA practices and the intensity, assessing through its determinants, and estimating its benefits in terms of its impacts on crop yield and farm income. For this purpose, 420 farmers were interviewed across three agro-ecological zones of Punjab, Pakistan. The study employs multinomial logistic regression to examine the factors that determine the adoption of single to a full package of CSA practices. Further, it uses a two-stage least square estimation technique to control the endogeneity problem and to estimate its conditional impact on crop yield and farm income. The study reveals interesting findings and demonstrates that the adoption of single to a full package of CSA practices is mostly explained by the institutional factors, financial resources, size of land holding, and level of education attained by the farmers. Similarly, more affected farmers due to climatic shocks were more intended to adopt CSA practices. Findings confirm that farmers who adopted a full set of CSA practices gain higher yield 32% and 44% kg/ha, and higher farm income 45% and 48% US$ per ha than non-adopted farmers for cotton–wheat and rice–wheat crops, respectively. Further, the impact of adaptation also varies to the intensity of CSA practices adopted by the farmers. This study suggests effective institutional and policy implications for creating awareness and financial support to the farmers to accelerate the adoption of CSA practices. These measures can enhance the farmers’ adaptive capacity that is needed for the sustainable livelihood of rural masses and food production.

Suggested Citation

  • Asif Sardar & Adiqa K. Kiani & Yasemin Kuslu, 2021. "Does adoption of climate-smart agriculture (CSA) practices improve farmers’ crop income? Assessing the determinants and its impacts in Punjab province, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10119-10140, July.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:7:d:10.1007_s10668-020-01049-6
    DOI: 10.1007/s10668-020-01049-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-01049-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-01049-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Imran, Muhammad Ali & Ali, Asghar & Ashfaq, Muhammad & Hassan, Sarfraz & Culas, Richard & Ma, Chunbo, 2019. "Impact of climate smart agriculture (CSA) through sustainable irrigation management on Resource use efficiency: A sustainable production alternative for cotton," Land Use Policy, Elsevier, vol. 88(C).
    2. Pradeep Kurukulasuriya & Namrata Kala & Robert Mendelsohn, 2011. "Adaptation And Climate Change Impacts: A Structural Ricardian Model Of Irrigation And Farm Income In Africa," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 149-174.
    3. Fentie, Amare & Beyene, Abebe D., 2019. "Climate-smart agricultural practices and welfare of rural smallholders in Ethiopia: Does planting method matter?," Land Use Policy, Elsevier, vol. 85(C), pages 387-396.
    4. Philip K. Thornton & Todd Rosenstock & Wiebke Förch & Christine Lamanna & Patrick Bell & Ben Henderson & Mario Herrero, 2018. "A Qualitative Evaluation of CSA Options in Mixed Crop-Livestock Systems in Developing Countries," Natural Resource Management and Policy, in: Leslie Lipper & Nancy McCarthy & David Zilberman & Solomon Asfaw & Giacomo Branca (ed.), Climate Smart Agriculture, pages 385-423, Springer.
    5. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    6. Christian Thierfelder & Pauline Chivenge & Walter Mupangwa & Todd S. Rosenstock & Christine Lamanna & Joseph X. Eyre, 2017. "How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(3), pages 537-560, June.
    7. François Bourguignon & Martin Fournier & Marc Gurgand, 2007. "Selection Bias Corrections Based On The Multinomial Logit Model: Monte Carlo Comparisons," Journal of Economic Surveys, Wiley Blackwell, vol. 21(1), pages 174-205, February.
    8. Salvatore Di Falco & Mahmud Yesuf & Gunnar Kohlin & Claudia Ringler, 2012. "Estimating the Impact of Climate Change on Agriculture in Low-Income Countries: Household Level Evidence from the Nile Basin, Ethiopia," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(4), pages 457-478, August.
    9. Muhammad Ali Imran & Asghar Ali & Muhammad Ashfaq & Sarfraz Hassan & Richard Culas & Chunbo Ma, 2018. "Impact of Climate Smart Agriculture (CSA) Practices on Cotton Production and Livelihood of Farmers in Punjab, Pakistan," Sustainability, MDPI, vol. 10(6), pages 1-20, June.
    10. Sain, Gustavo & Loboguerrero, Ana María & Corner-Dolloff, Caitlin & Lizarazo, Miguel & Nowak, Andreea & Martínez-Barón, Deissy & Andrieu, Nadine, 2017. "Costs and benefits of climate-smart agriculture: The case of the Dry Corridor in Guatemala," Agricultural Systems, Elsevier, vol. 151(C), pages 163-173.
    11. A. J. Challinor & J. Watson & D. B. Lobell & S. M. Howden & D. R. Smith & N. Chhetri, 2014. "A meta-analysis of crop yield under climate change and adaptation," Nature Climate Change, Nature, vol. 4(4), pages 287-291, April.
    12. Hailemariam Teklewold & Alemu Mekonnen & Gunnar Kohlin & Salvatore Di Falco, 2017. "Does Adoption Of Multiple Climate-Smart Practices Improve Farmers’ Climate Resilience? Empirical Evidence From The Nile Basin Of Ethiopia," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 1-30, February.
    13. Babatunde O. Abidoye & Pradeep Kurukulasuriya & Brian Reed & Robert Mendelsohn, 2017. "Structural Ricardian Analysis Of South-East Asian Agriculture," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(03), pages 1-17, August.
    14. Gashaw Tadesse ABATE & Gian Nicola FRANCESCONI & Kindie GETNET, 2014. "Impact Of Agricultural Cooperatives On Smallholders’ Technical Efficiency: Empirical Evidence From Ethiopia," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 85(2), pages 257-286, June.
    15. Kaczan, David & Arslan, Aslihan & Lipper, Leslie, 2013. "Climate-Smart Agriculture? A review of current practice of agroforestry and conservation agriculture in Malawi and Zambia," ESA Working Papers 288985, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    16. Brandt, Patric & Kvakić, Marko & Butterbach-Bahl, Klaus & Rufino, Mariana C., 2017. "How to target climate-smart agriculture? Concept and application of the consensus-driven decision support framework “targetCSA”," Agricultural Systems, Elsevier, vol. 151(C), pages 234-245.
    17. Edmond Totin & Alcade C. Segnon & Marc Schut & Hippolyte Affognon & Robert B. Zougmoré & Todd Rosenstock & Philip K. Thornton, 2018. "Institutional Perspectives of Climate-Smart Agriculture: A Systematic Literature Review," Sustainability, MDPI, vol. 10(6), pages 1-20, June.
    18. David W. Carter & J. Walter Milon, 2005. "Price Knowledge in Household Demand for Utility Services," Land Economics, University of Wisconsin Press, vol. 81(2).
    19. Leslie Lipper & Philip Thornton & Bruce M. Campbell & Tobias Baedeker & Ademola Braimoh & Martin Bwalya & Patrick Caron & Andrea Cattaneo & Dennis Garrity & Kevin Henry & Ryan Hottle & Louise Jackson , 2014. "Climate-smart agriculture for food security," Nature Climate Change, Nature, vol. 4(12), pages 1068-1072, December.
    20. Seo, S. Niggol & Mendelsohn, Robert, 2008. "A structural ricardian analysis of climate change impacts and adaptations in African agriculture," Policy Research Working Paper Series 4603, The World Bank.
    21. Mwongera, Caroline & Shikuku, Kelvin M. & Twyman, Jennifer & Läderach, Peter & Ampaire, Edidah & Van Asten, Piet & Twomlow, Steve & Winowiecki, Leigh A., 2017. "Climate smart agriculture rapid appraisal (CSA-RA): A tool for prioritizing context-specific climate smart agriculture technologies," Agricultural Systems, Elsevier, vol. 151(C), pages 192-203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nawab Khan & Ram L. Ray & Hazem S. Kassem & Muhammad Ihtisham & Badar Naseem Siddiqui & Shemei Zhang, 2022. "Can Cooperative Supports and Adoption of Improved Technologies Help Increase Agricultural Income? Evidence from a Recent Study," Land, MDPI, vol. 11(3), pages 1-18, March.
    2. Adiqa Kausar Kiani & Asif Sardar & Wasim Ullah Khan & Yigang He & Abdulbaki Bilgic & Yasemin Kuslu & Muhammad Asif Zahoor Raja, 2021. "Role of Agricultural Diversification in Improving Resilience to Climate Change: An Empirical Analysis with Gaussian Paradigm," Sustainability, MDPI, vol. 13(17), pages 1-15, August.
    3. Min Cui & Jizhou Zhang & Xianli Xia, 2022. "The Relationship between Child Rearing Burden and Farmers’ Adoption of Climate Adaptive Technology: Taking Water-Saving Irrigation Technology as an Example," Agriculture, MDPI, vol. 12(6), pages 1-22, June.
    4. Pomi Shahbaz & Azhar Abbas & Babar Aziz & Bader Alhafi Alotaibi & Abou Traore, 2022. "Nexus between Climate-Smart Livestock Production Practices and Farmers’ Nutritional Security in Pakistan: Exploring Level, Linkages, and Determinants," IJERPH, MDPI, vol. 19(9), pages 1-22, April.
    5. Xiance Sang & Chen Chen & Die Hu & Dil Bahadur Rahut, 2024. "Economic benefits of climate-smart agricultural practices: empirical investigations and policy implications," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(1), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thornton, Philip K. & Whitbread, Anthony & Baedeker, Tobias & Cairns, Jill & Claessens, Lieven & Baethgen, Walter & Bunn, Christian & Friedmann, Michael & Giller, Ken E. & Herrero, Mario & Howden, Mar, 2018. "A framework for priority-setting in climate smart agriculture research," Agricultural Systems, Elsevier, vol. 167(C), pages 161-175.
    2. Hailemariam Teklewold & Alemu Mekonnen & Gunnar Kohlin & Salvatore Di Falco, 2017. "Does Adoption Of Multiple Climate-Smart Practices Improve Farmers’ Climate Resilience? Empirical Evidence From The Nile Basin Of Ethiopia," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 1-30, February.
    3. Martey, Edward & Etwire, Prince Maxwell & Abdoulaye, Tahirou, 2020. "Welfare impacts of climate-smart agriculture in Ghana: Does row planting and drought-tolerant maize varieties matter?," Land Use Policy, Elsevier, vol. 95(C).
    4. Adiqa Kausar Kiani & Asif Sardar & Wasim Ullah Khan & Yigang He & Abdulbaki Bilgic & Yasemin Kuslu & Muhammad Asif Zahoor Raja, 2021. "Role of Agricultural Diversification in Improving Resilience to Climate Change: An Empirical Analysis with Gaussian Paradigm," Sustainability, MDPI, vol. 13(17), pages 1-15, August.
    5. Mohamed Rafik Noor Mohamed Qureshi & Ali Saeed Almuflih & Janpriy Sharma & Mohit Tyagi & Shubhendu Singh & Naif Almakayeel, 2022. "Assessment of the Climate-Smart Agriculture Interventions towards the Avenues of Sustainable Production–Consumption," Sustainability, MDPI, vol. 14(14), pages 1-24, July.
    6. Wonder Agbenyo & Yuansheng Jiang & Xinxin Jia & Jingyi Wang & Gideon Ntim-Amo & Rahman Dunya & Anthony Siaw & Isaac Asare & Martinson Ankrah Twumasi, 2022. "Does the Adoption of Climate-Smart Agricultural Practices Impact Farmers’ Income? Evidence from Ghana," IJERPH, MDPI, vol. 19(7), pages 1-25, March.
    7. Wondimagegn Tesfaye & Garrick Blalock & Nyasha Tirivayi, 2021. "Climate‐Smart Innovations and Rural Poverty in Ethiopia: Exploring Impacts and Pathways," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 878-899, May.
    8. Edmond Totin & Alcade C. Segnon & Marc Schut & Hippolyte Affognon & Robert B. Zougmoré & Todd Rosenstock & Philip K. Thornton, 2018. "Institutional Perspectives of Climate-Smart Agriculture: A Systematic Literature Review," Sustainability, MDPI, vol. 10(6), pages 1-20, June.
    9. Bairagi, Subir & Bhandari, Humnath & Kumar Das, Subrata & Mohanty, Samarendu, 2021. "Flood-tolerant rice improves climate resilience, profitability, and household consumption in Bangladesh," Food Policy, Elsevier, vol. 105(C).
    10. Jew, Eleanor K.K. & Whitfield, Stephen & Dougill, Andrew J. & Mkwambisi, David D. & Steward, Peter, 2020. "Farming systems and Conservation Agriculture: Technology, structures and agency in Malawi," Land Use Policy, Elsevier, vol. 95(C).
    11. Salvatore Falco & Marcella Veronesi, 2018. "Managing Environmental Risk in Presence of Climate Change: The Role of Adaptation in the Nile Basin of Ethiopia," Natural Resource Management and Policy, in: Leslie Lipper & Nancy McCarthy & David Zilberman & Solomon Asfaw & Giacomo Branca (ed.), Climate Smart Agriculture, pages 497-526, Springer.
    12. Teklewold, Hailemariam & Gebrehiwot, Tagel & Bezabih, Mintewab, 2019. "Climate smart agricultural practices and gender differentiated nutrition outcome: An empirical evidence from Ethiopia," World Development, Elsevier, vol. 122(C), pages 38-53.
    13. Mutenje, Munyaradzi Junia & Farnworth, Cathy Rozel & Stirling, Clare & Thierfelder, Christian & Mupangwa, Walter & Nyagumbo, Isaiah, 2019. "A cost-benefit analysis of climate-smart agriculture options in Southern Africa: Balancing gender and technology," Ecological Economics, Elsevier, vol. 163(C), pages 126-137.
    14. Abyiot Teklu & Belay Simane & Mintewab Bezabih, 2022. "Effectiveness of Climate-Smart Agriculture Innovations in Smallholder Agriculture System in Ethiopia," Sustainability, MDPI, vol. 14(23), pages 1-26, December.
    15. Gebrehiwot, Tagel & Teklewold, Hailemariam & Bezabih, Mintewab & Seifemichael, Robel, 2021. "Does a portfolio of consumption adjustment coping strategies erode resilience? Panel data evidence from Ethiopia," World Development Perspectives, Elsevier, vol. 23(C).
    16. Gurdeep Singh Malhi & Manpreet Kaur & Prashant Kaushik, 2021. "Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    17. Giulio Fusco & Marta Melgiovanni & Donatella Porrini & Traci Michelle Ricciardo, 2020. "How to Improve the Diffusion of Climate-Smart Agriculture: What the Literature Tells us," Sustainability, MDPI, vol. 12(12), pages 1-15, June.
    18. Arenas-Calle, Laura N. & Ramirez-Villegas, Julian & Whitfield, Stephen & Challinor, Andrew J., 2021. "Design of a Soil-based Climate-Smartness Index (SCSI) using the trend and variability of yields and soil organic carbon," Agricultural Systems, Elsevier, vol. 190(C).
    19. Mintewab Bezabih & Finn Tarp & Hailemariam Teklewold & Alemu Mekonnen & Tagel G/Hiwot, 2023. "Traditional versus improved varieties of seed: Is there a trade-off between productivity and risk?," DERG working paper series 23-21, University of Copenhagen. Department of Economics. Development Economics Research Group (DERG).
    20. Acosta-Alba, Ivonne & Chia, Eduardo & Andrieu, Nadine, 2019. "The LCA4CSA framework: Using life cycle assessment to strengthen environmental sustainability analysis of climate smart agriculture options at farm and crop system levels," Agricultural Systems, Elsevier, vol. 171(C), pages 155-170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:7:d:10.1007_s10668-020-01049-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.