IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v176y2023i8d10.1007_s10584-023-03589-y.html
   My bibliography  Save this article

Climate change, air conditioning, and urbanization—evidence from daily household electricity consumption data in China

Author

Listed:
  • Jian Cui

    (Renmin University of China)

  • Lunyu Xie

    (Renmin University of China)

  • Xinye Zheng

    (Renmin University of China)

Abstract

Energy consumption is a chief contributor to climate change, which increases as households use more air conditioning (AC) in response to climate change. As such, climate change–induced energy consumption is expected to increase more drastically in fast-emerging economies, where the rapidly increasing household income and urbanization promote the large-scale adoption of ACs. Based on data on daily household electricity consumption in the Zhejiang Province of China, this study estimates the household temperature response functions. In particular, we consider urban and rural households with and without AC to chart their various cooling demand and consumption behavior, typically indicated by U-shaped temperature-response functions. Compared to rural households and those without AC, urban households and those with AC exhibit steeper response functions at both high and low temperatures. Based on these estimates, we simulate the household electricity consumption under climate change scenarios RCP4.5 and RCP8.5. The simulation results reveal that (1) under constant urbanization and AC adoption rates, the electricity consumption in the residential sector will increase by 5.04–16.37% because of climate change; (2) as the AC adoption rate increases from 82.50 to 95.00% in urban areas and from 74.40 to 85.00% in rural areas, the household electricity consumption in Zhejiang Province will further increase by 0.52–1.05%; (3) combined with the increase of urbanization from 68.73 to 80.00%, the increase rate of annual electricity consumption of the residential sector will further rise to 25.60–55.79%. These findings highlight the vicious cycle of climate change and cooling along with the challenges encountered by electricity grids.

Suggested Citation

  • Jian Cui & Lunyu Xie & Xinye Zheng, 2023. "Climate change, air conditioning, and urbanization—evidence from daily household electricity consumption data in China," Climatic Change, Springer, vol. 176(8), pages 1-19, August.
  • Handle: RePEc:spr:climat:v:176:y:2023:i:8:d:10.1007_s10584-023-03589-y
    DOI: 10.1007/s10584-023-03589-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-023-03589-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-023-03589-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    2. Considine, Timothy J., 2000. "The impacts of weather variations on energy demand and carbon emissions," Resource and Energy Economics, Elsevier, vol. 22(4), pages 295-314, October.
    3. Rapson, David, 2014. "Durable goods and long-run electricity demand: Evidence from air conditioner purchase behavior," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 141-160.
    4. Sailor, D.J & Pavlova, A.A, 2003. "Air conditioning market saturation and long-term response of residential cooling energy demand to climate change," Energy, Elsevier, vol. 28(9), pages 941-951.
    5. Paul J. Gertler & Orie Shelef & Catherine D. Wolfram & Alan Fuchs, 2016. "The Demand for Energy-Using Assets among the World's Rising Middle Classes," American Economic Review, American Economic Association, vol. 106(6), pages 1366-1401, June.
    6. Yating Li & William A. Pizer & Libo Wu, 2019. "Climate change and residential electricity consumption in the Yangtze River Delta, China," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(2), pages 472-477, January.
    7. Auffhammer, Maximilian, 2022. "Climate Adaptive Response Estimation: Short and long run impacts of climate change on residential electricity and natural gas consumption," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    8. Olivier Deschênes & Michael Greenstone, 2011. "Climate Change, Mortality, and Adaptation: Evidence from Annual Fluctuations in Weather in the US," American Economic Journal: Applied Economics, American Economic Association, vol. 3(4), pages 152-185, October.
    9. Sailor, David J. & Muñoz, J.Ricardo, 1997. "Sensitivity of electricity and natural gas consumption to climate in the U.S.A.—Methodology and results for eight states," Energy, Elsevier, vol. 22(10), pages 987-998.
    10. Wolfram Schlenker & Michael J. Roberts, 2008. "Estimating the Impact of Climate Change on Crop Yields: The Importance of Nonlinear Temperature Effects," NBER Working Papers 13799, National Bureau of Economic Research, Inc.
    11. Suits, Daniel B, 1984. "Dummy Variables: Mechanics v. Interpretation," The Review of Economics and Statistics, MIT Press, vol. 66(1), pages 177-180, February.
    12. Maximilian Auffhammer, 2014. "Cooling China: The Weather Dependence of Air Conditioner Adoption," Frontiers of Economics in China-Selected Publications from Chinese Universities, Higher Education Press, vol. 9(1), pages 70-84, March.
    13. Alberto Salvo, 2018. "Electrical appliances moderate households’ water demand response to heat," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Auffhammer, Maximilian & Mansur, Erin T., 2014. "Measuring climatic impacts on energy consumption: A review of the empirical literature," Energy Economics, Elsevier, vol. 46(C), pages 522-530.
    2. Hongliang Zhang & Jianhong E. Mu & Bruce A. McCarl & Jialing Yu, 2022. "The impact of climate change on global energy use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-19, January.
    3. Enrica De Cian & Filippo Pavanello & Teresa Randazzo & Malcolm Mistry & Marinella Davide, 2019. "Does climate influence households' thermal comfort decisions?," Working Papers 2019:02, Department of Economics, University of Venice "Ca' Foscari".
    4. François Cohen & Matthieu Glachant & Magnus Söderberg, 2017. "The cost of adapting to climate change: evidence from the US residential sector," Working Papers hal-01695171, HAL.
    5. Daniel C. Steinberg & Bryan K. Mignone & Jordan Macknick & Yinong Sun & Kelly Eurek & Andrew Badger & Ben Livneh & Kristen Averyt, 2020. "Decomposing supply-side and demand-side impacts of climate change on the US electricity system through 2050," Climatic Change, Springer, vol. 158(2), pages 125-139, January.
    6. Enrica Cian & Ian Sue Wing, 2019. "Global Energy Consumption in a Warming Climate," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(2), pages 365-410, February.
    7. Jones, Andrew & Nock, Destenie & Samaras, Constantine & Qiu, Yueming (Lucy) & Xing, Bo, 2023. "Climate change impacts on future residential electricity consumption and energy burden: A case study in Phoenix, Arizona," Energy Policy, Elsevier, vol. 183(C).
    8. Zhu, Dan & Tao, Shu & Wang, Rong & Shen, Huizhong & Huang, Ye & Shen, Guofeng & Wang, Bin & Li, Wei & Zhang, Yanyan & Chen, Han & Chen, Yuanchen & Liu, Junfeng & Li, Bengang & Wang, Xilong & Liu, Wenx, 2013. "Temporal and spatial trends of residential energy consumption and air pollutant emissions in China," Applied Energy, Elsevier, vol. 106(C), pages 17-24.
    9. Marilyn A. Brown & Matt Cox & Ben Staver & Paul Baer, 2016. "Modeling climate-driven changes in U.S. buildings energy demand," Climatic Change, Springer, vol. 134(1), pages 29-44, January.
    10. Yu, Xiumei & Lei, Xiaoyan & Wang, Min, 2019. "Temperature effects on mortality and household adaptation: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 195-212.
    11. Li, Jianglong & Yang, Lisha & Long, Houyin, 2018. "Climatic impacts on energy consumption: Intensive and extensive margins," Energy Economics, Elsevier, vol. 71(C), pages 332-343.
    12. Marilyn Brown & Matt Cox & Ben Staver & Paul Baer, 2016. "Modeling climate-driven changes in U.S. buildings energy demand," Climatic Change, Springer, vol. 134(1), pages 29-44, January.
    13. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    14. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    15. Lanlan Li & Xinpei Song & Jingjing Li & Ke Li & Jianling Jiao, 2023. "The impacts of temperature on residential electricity consumption in Anhui, China: does the electricity price matter?," Climatic Change, Springer, vol. 176(3), pages 1-26, March.
    16. Cuihui Xia & Tandong Yao & Weicai Wang & Wentao Hu, 2022. "Effect of Climate on Residential Electricity Consumption: A Data-Driven Approach," Energies, MDPI, vol. 15(9), pages 1-20, May.
    17. Matthew Ranson & Lauren Morris & Alex Kats-Rubin, 2014. "Climate Change and Space Heating Energy Demand: A Review of the Literature," NCEE Working Paper Series 201407, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Dec 2014.
    18. Francisco Ralston Fonseca & Paulina Jaramillo & Mario Bergés & Edson Severnini, 2019. "Seasonal effects of climate change on intra-day electricity demand patterns," Climatic Change, Springer, vol. 154(3), pages 435-451, June.
    19. Fazeli, Reza & Davidsdottir, Brynhildur & Hallgrimsson, Jonas Hlynur, 2016. "Residential energy demand for space heating in the Nordic countries: Accounting for interfuel substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1210-1226.
    20. Randazzo, Teresa & De Cian, Enrica & Mistry, Malcolm N., 2020. "Air conditioning and electricity expenditure: The role of climate in temperate countries," Economic Modelling, Elsevier, vol. 90(C), pages 273-287.

    More about this item

    Keywords

    Air conditioning; Climate change; Electricity consumption; Household temperature response function;
    All these keywords.

    JEL classification:

    • D10 - Microeconomics - - Household Behavior - - - General
    • R20 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - General
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:176:y:2023:i:8:d:10.1007_s10584-023-03589-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.