IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v115y2012i3p759-776.html
   My bibliography  Save this article

Assessing temporary carbon sequestration and storage projects through land use, land-use change and forestry: comparison of dynamic life cycle assessment with ton-year approaches

Author

Listed:
  • Annie Levasseur
  • Pascal Lesage
  • Manuele Margni
  • Miguel Brandão
  • Réjean Samson

Abstract

In order to properly assess the climate impact of temporary carbon sequestration and storage projects through land-use, land-use change and forestry (LULUCF), it is important to consider their temporal aspect. Dynamic life cycle assessment (dynamic LCA) was developed to account for time while assessing the potential impact of life cycle greenhouse gases (GHG) emissions. In this paper, the dynamic LCA approach is applied to a temporary carbon sequestration project through afforestation, and the results are compared with those of the two principal ton-year approaches: the Moura-Costa and the Lashof methods. The dynamic LCA covers different scenarios, which are distinguished by the assumptions regarding what happens at the end of the sequestration period. In order to ascertain the degree of compensation of an emission through a LULUCF project, the ratio of the cumulative impact of the project to the cumulative impact of a baseline GHG emission is calculated over time. This ratio tends to 1 when assuming that, after the end of the sequestration project period, the forest is maintained indefinitely. Conversely, the ratio tends to much lower values in scenarios where part of the carbon is released back to the atmosphere due to e.g. fire or forest exploitation. The comparison of dynamic LCA with the ton-year approaches shows that it is a more flexible approach as it allows the consideration of every life cycle stage of the project and it gives decision makers the opportunity to test the sensitivity of the results to the choice of different time horizons. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Annie Levasseur & Pascal Lesage & Manuele Margni & Miguel Brandão & Réjean Samson, 2012. "Assessing temporary carbon sequestration and storage projects through land use, land-use change and forestry: comparison of dynamic life cycle assessment with ton-year approaches," Climatic Change, Springer, vol. 115(3), pages 759-776, December.
  • Handle: RePEc:spr:climat:v:115:y:2012:i:3:p:759-776
    DOI: 10.1007/s10584-012-0473-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0473-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0473-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fearnside, Philip M., 2002. "Time preference in global warming calculations: a proposal for a unified index," Ecological Economics, Elsevier, vol. 41(1), pages 21-31, April.
    2. Richard A. Betts, 2000. "Offset of the potential carbon sink from boreal forestation by decreases in surface albedo," Nature, Nature, vol. 408(6809), pages 187-190, November.
    3. Alexandre Courchesne & Valérie Bécaert & Ralph K. Rosenbaum & Louise Deschênes & Réjean Samson, 2010. "Using the Lashof Accounting Methodology to Assess Carbon Mitigation Projects With Life Cycle Assessment: Ethanol Biofuel as a Case Study," Journal of Industrial Ecology, Yale University, vol. 14(2), pages 309-321, March.
    4. Feng, Hongli, 2005. "The dynamics of carbon sequestration and alternative carbon accounting, with an application to the upper Mississippi River Basin," Ecological Economics, Elsevier, vol. 54(1), pages 23-35, July.
    5. Philip Fearnside & Daniel Lashof & Pedro Moura-Costa, 2000. "Accounting for time in Mitigating Global Warming through land-use change and forestry," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 5(3), pages 239-270, September.
    6. Chomitz, Kenneth M., 2000. "Evaluating carbon offsets from forestry and energy projects," Policy Research Working Paper Series 2357, The World Bank.
    7. Ian Noble & R. J. Scholes, 2001. "Sinks and the Kyoto Protocol," Climate Policy, Taylor & Francis Journals, vol. 1(1), pages 5-25, March.
    8. Miko Kirschbaum, 2006. "Temporary Carbon Sequestration Cannot Prevent Climate Change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(5), pages 1151-1164, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harald Dyckhoff & Tarek Kasah, 2014. "Time Horizon and Dominance in Dynamic Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 799-808, December.
    2. Pierobon, Francesca & Zanetti, Michela & Grigolato, Stefano & Sgarbossa, Andrea & Anfodillo, Tommaso & Cavalli, Raffaele, 2015. "Life cycle environmental impact of firewood production – A case study in Italy," Applied Energy, Elsevier, vol. 150(C), pages 185-195.
    3. Charles Breton & Pierre Blanchet & Ben Amor & Robert Beauregard & Wen-Shao Chang, 2018. "Assessing the Climate Change Impacts of Biogenic Carbon in Buildings: A Critical Review of Two Main Dynamic Approaches," Sustainability, MDPI, vol. 10(6), pages 1-30, June.
    4. Albers, Ariane & Collet, Pierre & Lorne, Daphné & Benoist, Anthony & Hélias, Arnaud, 2019. "Coupling partial-equilibrium and dynamic biogenic carbon models to assess future transport scenarios in France," Applied Energy, Elsevier, vol. 239(C), pages 316-330.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marshall, Liz & Kelly, Alexia, 2010. "The Time Value of Carbon and Carbon Storage: Clarifying the terms and the policy implications of the debate," MPRA Paper 27326, University Library of Munich, Germany.
    2. H. Damon Matthews & Kirsten Zickfeld & Alexander Koch & Amy Luers, 2023. "Accounting for the climate benefit of temporary carbon storage in nature," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Parisa, Zack & Marland, Eric & Sohngen, Brent & Marland, Gregg & Jenkins, Jennifer, 2022. "The time value of carbon storage," Forest Policy and Economics, Elsevier, vol. 144(C).
    4. Philip Fearnside, 2009. "Carbon benefits from Amazonian forest reserves: leakage accounting and the value of time," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(6), pages 557-567, August.
    5. Michael Dutschke, 2007. "CDM Forestry and the Ultimate Objective of the Climate Convention," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(2), pages 275-302, February.
    6. Rehdanz, Katrin & Tol, Richard S.J. & Wetzel, Patrick, 2006. "Ocean carbon sinks and international climate policy," Energy Policy, Elsevier, vol. 34(18), pages 3516-3526, December.
    7. Oscar J. Cacho & Robyn L. Hean & Russell M. Wise, 2003. "Carbon‐accounting methods and reforestation incentives," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(2), pages 153-179, June.
    8. Miko Kirschbaum, 2006. "Temporary Carbon Sequestration Cannot Prevent Climate Change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(5), pages 1151-1164, September.
    9. Suzi Kerr, 2003. "Indigenous Forests and Forest Sink Policy in New Zealand," Working Papers 03_15, Motu Economic and Public Policy Research.
    10. Lasse Ringius, 2001. "What Prospects for Soil Carbon Sequestration in the CDM? Cop-6 and beyond," Energy & Environment, , vol. 12(4), pages 275-285, July.
    11. Lenzen, Manfred & Dey, Christopher J. & Murray, Shauna A., 2004. "Historical accountability and cumulative impacts: the treatment of time in corporate sustainability reporting," Ecological Economics, Elsevier, vol. 51(3-4), pages 237-250, December.
    12. Heli Lu & Guifang Liu, 2015. "Opportunity Costs of Carbon Emissions Stemming from Changes in Land Use," Sustainability, MDPI, vol. 7(4), pages 1-18, March.
    13. Miguel Brandão & Roland Clift & Llorenç Milà i Canals & Lauren Basson, 2010. "A Life-Cycle Approach to Characterising Environmental and Economic Impacts of Multifunctional Land-Use Systems: An Integrated Assessment in the UK," Sustainability, MDPI, vol. 2(12), pages 1-30, December.
    14. G. Cornelis van Kooten & Grant Hauer, 2001. "Global Climate Change: Canadian Policy and the Role of Terrestrial Ecosystems," Canadian Public Policy, University of Toronto Press, vol. 27(3), pages 267-278, September.
    15. Suzi Kerr, 2003. "Efficient Contracts for Carbon Credits from Reforestation Projects," Working Papers 03_12, Motu Economic and Public Policy Research.
    16. Paschen, Marius & Meier, Felix & Rickels, Wilfried, 2022. "Accounting for terrestrial and marine carbon sink enhancement," Kiel Working Papers 2204, Kiel Institute for the World Economy (IfW Kiel), revised 2022.
    17. Lecocq, Franck & Chomitz, Kenneth, 2001. "Optimal use of carbon sequestration in a global climate change strategy : is there a wooden bridge to a clean energy future ?," Policy Research Working Paper Series 2635, The World Bank.
    18. Naughton-Treves, Lisa, 2004. "Deforestation and Carbon Emissions at Tropical Frontiers: A Case Study from the Peruvian Amazon," World Development, Elsevier, vol. 32(1), pages 173-190, January.
    19. Osborne, Tracey & Kiker, Clyde, 2005. "Carbon offsets as an economic alternative to large-scale logging: a case study in Guyana," Ecological Economics, Elsevier, vol. 52(4), pages 481-496, March.
    20. Güssow, Kerstin & Proelss, Alexander & Oschlies, Andreas & Rehdanz, Katrin & Rickels, Wilfried, 2010. "Ocean iron fertilization: Why further research is needed," Marine Policy, Elsevier, vol. 34(5), pages 911-918, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:115:y:2012:i:3:p:759-776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.