IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i6p2020-d152579.html
   My bibliography  Save this article

Assessing the Climate Change Impacts of Biogenic Carbon in Buildings: A Critical Review of Two Main Dynamic Approaches

Author

Listed:
  • Charles Breton

    (Department of Wood and Forest Sciences, Industrial Chair on Eco-Responsible Wood Construction (CIRCERB), Université Laval, Québec, QC G1V 0A6, Canada)

  • Pierre Blanchet

    (Department of Wood and Forest Sciences, Industrial Chair on Eco-Responsible Wood Construction (CIRCERB), Université Laval, Québec, QC G1V 0A6, Canada)

  • Ben Amor

    (Interdisciplinary Research Laboratory on Sustainable Engineering and Ecodesign (LIRIDE), Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada)

  • Robert Beauregard

    (Department of Wood and Forest Sciences, Industrial Chair on Eco-Responsible Wood Construction (CIRCERB), Université Laval, Québec, QC G1V 0A6, Canada
    Robert Beauregard is the Executive Vice Rector of Université Laval.)

  • Wen-Shao Chang

    (School of Architecture, University of Sheffield, Sheffield S10 2TN, UK)

Abstract

Wood is increasingly perceived as a renewable, sustainable building material. The carbon it contains, biogenic carbon, comes from biological processes; it is characterized by a rapid turnover in the global carbon cycle. Increasing the use of harvested wood products (HWP) from sustainable forest management could provide highly needed mitigation efforts and carbon removals. However, the combined climate change benefits of sequestering biogenic carbon, storing it in harvested wood products and substituting more emission-intensive materials are hard to quantify. Although different methodological choices and assumptions can lead to opposite conclusions, there is no consensus on the assessment of biogenic carbon in life cycle assessment (LCA). Since LCA is increasingly relied upon for decision and policy making, incorrect biogenic carbon assessment could lead to inefficient or counterproductive strategies, as well as missed opportunities. This article presents a critical review of biogenic carbon impact assessment methods, it compares two main approaches to include time considerations in LCA, and suggests one that seems better suited to assess the impacts of biogenic carbon in buildings.

Suggested Citation

  • Charles Breton & Pierre Blanchet & Ben Amor & Robert Beauregard & Wen-Shao Chang, 2018. "Assessing the Climate Change Impacts of Biogenic Carbon in Buildings: A Critical Review of Two Main Dynamic Approaches," Sustainability, MDPI, vol. 10(6), pages 1-30, June.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:2020-:d:152579
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/6/2020/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/6/2020/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cherubini, Francesco & Strømman, Anders H. & Hertwich, Edgar, 2011. "Effects of boreal forest management practices on the climate impact of CO2 emissions from bioenergy," Ecological Modelling, Elsevier, vol. 223(1), pages 59-66.
    2. Florian Suter & Bernhard Steubing & Stefanie Hellweg, 2017. "Life Cycle Impacts and Benefits of Wood along the Value Chain: The Case of Switzerland," Journal of Industrial Ecology, Yale University, vol. 21(4), pages 874-886, August.
    3. Caroline Gaudreault & Reid Miner, 2015. "Temporal Aspects in Evaluating the Greenhouse Gas Mitigation Benefits of Using Residues from Forest Products Manufacturing Facilities for Energy Production," Journal of Industrial Ecology, Yale University, vol. 19(6), pages 994-1007, December.
    4. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    5. Rupert Seidl & Dominik Thom & Markus Kautz & Dario Martin-Benito & Mikko Peltoniemi & Giorgio Vacchiano & Jan Wild & Davide Ascoli & Michal Petr & Juha Honkaniemi & Manfred J. Lexer & Volodymyr Trotsi, 2017. "Forest disturbances under climate change," Nature Climate Change, Nature, vol. 7(6), pages 395-402, June.
    6. Philip Fearnside & Daniel Lashof & Pedro Moura-Costa, 2000. "Accounting for time in Mitigating Global Warming through land-use change and forestry," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 5(3), pages 239-270, September.
    7. David Moher & Alessandro Liberati & Jennifer Tetzlaff & Douglas G Altman & The PRISMA Group, 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-6, July.
    8. Geng, Aixin & Yang, Hongqiang & Chen, Jiaxin & Hong, Yinxing, 2017. "Review of carbon storage function of harvested wood products and the potential of wood substitution in greenhouse gas mitigation," Forest Policy and Economics, Elsevier, vol. 85(P1), pages 192-200.
    9. T. Gasser & C. Guivarch & K. Tachiiri & C. D. Jones & P. Ciais, 2015. "Negative emissions physically needed to keep global warming below 2 °C," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    10. Francesco Pomponi & Bernardino D’Amico & Alice M. Moncaster, 2017. "A Method to Facilitate Uncertainty Analysis in LCAs of Buildings," Energies, MDPI, vol. 10(4), pages 1-15, April.
    11. Rouleau, Jean & Gosselin, Louis & Blanchet, Pierre, 2018. "Understanding energy consumption in high-performance social housing buildings: A case study from Canada," Energy, Elsevier, vol. 145(C), pages 677-690.
    12. Buyle, Matthias & Braet, Johan & Audenaert, Amaryllis, 2013. "Life cycle assessment in the construction sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 379-388.
    13. Leif Gustavsson & Kim Pingoud & Roger Sathre, 2006. "Carbon Dioxide Balance of Wood Substitution: Comparing Concrete- and Wood-Framed Buildings," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(3), pages 667-691, May.
    14. Yang, Jin & Chen, Bin, 2014. "Global warming impact assessment of a crop residue gasification project—A dynamic LCA perspective," Applied Energy, Elsevier, vol. 122(C), pages 269-279.
    15. Lenzen, M. & Treloar, G., 2002. "Embodied energy in buildings: wood versus concrete--reply to Borjesson and Gustavsson," Energy Policy, Elsevier, vol. 30(3), pages 249-255, February.
    16. Kim Pingoud & Tommi Ekholm & Ilkka Savolainen, 2012. "Global warming potential factors and warming payback time as climate indicators of forest biomass use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(4), pages 369-386, April.
    17. Holtsmark, Bjart, 2013. "Boreal forest management and its effect on atmospheric CO2," Ecological Modelling, Elsevier, vol. 248(C), pages 130-134.
    18. Miko Kirschbaum, 2006. "Temporary Carbon Sequestration Cannot Prevent Climate Change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(5), pages 1151-1164, September.
    19. Geoffrey Guest & Francesco Cherubini & Anders H. Strømman, 2013. "Global Warming Potential of Carbon Dioxide Emissions from Biomass Stored in the Anthroposphere and Used for Bioenergy at End of Life," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 20-30, February.
    20. Boucher, O. & Reddy, M.S., 2008. "Climate trade-off between black carbon and carbon dioxide emissions," Energy Policy, Elsevier, vol. 36(1), pages 193-200, January.
    21. Annie Levasseur & Pascal Lesage & Manuele Margni & Miguel Brandão & Réjean Samson, 2012. "Assessing temporary carbon sequestration and storage projects through land use, land-use change and forestry: comparison of dynamic life cycle assessment with ton-year approaches," Climatic Change, Springer, vol. 115(3), pages 759-776, December.
    22. Annie Levasseur & Pascal Lesage & Manuele Margni & Réjean Samson, 2013. "Biogenic Carbon and Temporary Storage Addressed with Dynamic Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 117-128, February.
    23. Mohamad Monkiz Khasreen & Phillip F. G. Banfill & Gillian F. Menzies, 2009. "Life-Cycle Assessment and the Environmental Impact of Buildings: A Review," Sustainability, MDPI, vol. 1(3), pages 1-28, September.
    24. Harald Dyckhoff & Tarek Kasah, 2014. "Time Horizon and Dominance in Dynamic Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 799-808, December.
    25. Myles R. Allen & Jan S. Fuglestvedt & Keith P. Shine & Andy Reisinger & Raymond T. Pierrehumbert & Piers M. Forster, 2016. "New use of global warming potentials to compare cumulative and short-lived climate pollutants," Nature Climate Change, Nature, vol. 6(8), pages 773-776, August.
    26. Eric Marland & Kirk Stellar & Gregg Marland, 2010. "A distributed approach to accounting for carbon in wood products," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(1), pages 71-91, January.
    27. Anand, Chirjiv Kaur & Amor, Ben, 2017. "Recent developments, future challenges and new research directions in LCA of buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 408-416.
    28. Cherubini, Francesco & Fuglestvedt, Jan & Gasser, Thomas & Reisinger, Andy & Cavalett, Otávio & Huijbregts, Mark A.J. & Johansson, Daniel J.A. & Jørgensen, Susanne V. & Raugei, Marco & Schivley, Greg , 2016. "Bridging the gap between impact assessment methods and climate science," Environmental Science & Policy, Elsevier, vol. 64(C), pages 129-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eun-Kyung Jang & Yeo-Chang Youn, 2021. "Effects of Wood Product Utilization on Climate Change Mitigation in South Korea," Sustainability, MDPI, vol. 13(12), pages 1-16, June.
    2. Su, Shu & Ju, Jingyi & Guo, Qiyue & Li, Xiaodong & Zhu, Yimin, 2023. "A temporally dynamic model for regional carbon impact assessment based on city information modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    3. Long, Ting & Pan, Huanxue & Dong, Chao & Qin, Tao & Ma, Ping, 2019. "Exploring the competitive evolution of global wood forest product trade based on complex network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1224-1232.
    4. Otavio Cavalett & Sigurd Norem Slettmo & Francesco Cherubini, 2018. "Energy and Environmental Aspects of Using Eucalyptus from Brazil for Energy and Transportation Services in Europe," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    5. Matthias Buyle & Amaryllis Audenaert & Pieter Billen & Katrien Boonen & Steven Van Passel, 2019. "The Future of Ex-Ante LCA? Lessons Learned and Practical Recommendations," Sustainability, MDPI, vol. 11(19), pages 1-24, October.
    6. Jim Hart & Francesco Pomponi, 2020. "More Timber in Construction: Unanswered Questions and Future Challenges," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    7. Emily Hope & Bruno Gagnon & Vanja Avdić, 2020. "Assessment of the Impact of Climate Change Policies on the Market for Forest Industrial Residues," Sustainability, MDPI, vol. 12(5), pages 1-20, February.
    8. Kevin Allan & Adam R. Phillips, 2021. "Comparative Cradle-to-Grave Life Cycle Assessment of Low and Mid-Rise Mass Timber Buildings with Equivalent Structural Steel Alternatives," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    9. Shanshan Wang & Jiaxin Chen & Michael T. Ter‐Mikaelian & Annie Levasseur & Hongqiang Yang, 2022. "From carbon neutral to climate neutral: Dynamic life cycle assessment for wood‐based panels produced in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1437-1449, August.
    10. Galimshina, Alina & Moustapha, Maliki & Hollberg, Alexander & Padey, Pierryves & Lasvaux, Sébastien & Sudret, Bruno & Habert, Guillaume, 2022. "Bio-based materials as a robust solution for building renovation: A case study," Applied Energy, Elsevier, vol. 316(C).
    11. Cavalcanti, Eduardo J.C. & Carvalho, Monica & B. Azevedo, Jonathan L., 2019. "Exergoenvironmental results of a eucalyptus biomass-fired power plant," Energy, Elsevier, vol. 189(C).
    12. Stéphane Kouamé & Ali Ghannadzadeh, 2023. "A Comparative Parametric Study on Dynamic Biogenic Carbon of Harvested Wood Products: Biomass Rotation Period vs. Product Lifetime," Energies, MDPI, vol. 16(7), pages 1-11, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
    2. Xabat Oregi & Rufino Javier Hernández & Patxi Hernandez, 2020. "Environmental and Economic Prioritization of Building Energy Refurbishment Strategies with Life-Cycle Approach," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
    3. Albers, Ariane & Collet, Pierre & Lorne, Daphné & Benoist, Anthony & Hélias, Arnaud, 2019. "Coupling partial-equilibrium and dynamic biogenic carbon models to assess future transport scenarios in France," Applied Energy, Elsevier, vol. 239(C), pages 316-330.
    4. Thibodeau, Charles & Bataille, Alain & Sié, Marion, 2019. "Building rehabilitation life cycle assessment methodology–state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 408-422.
    5. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    6. Mastrucci, Alessio & Marvuglia, Antonino & Benetto, Enrico & Leopold, Ulrich, 2020. "A spatio-temporal life cycle assessment framework for building renovation scenarios at the urban scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    7. Johanna Olofsson, 2021. "Time-Dependent Climate Impact of Utilizing Residual Biomass for Biofuels—The Combined Influence of Modelling Choices and Climate Impact Metrics," Energies, MDPI, vol. 14(14), pages 1-17, July.
    8. Morgan R. Edwards & Jessika E. Trancik, 2022. "Consequences of equivalency metric design for energy transitions and climate change," Climatic Change, Springer, vol. 175(1), pages 1-27, November.
    9. Parisa, Zack & Marland, Eric & Sohngen, Brent & Marland, Gregg & Jenkins, Jennifer, 2022. "The time value of carbon storage," Forest Policy and Economics, Elsevier, vol. 144(C).
    10. Xingqiang Song & Christel Carlsson & Ramona Kiilsgaard & David Bendz & Helene Kennedy, 2020. "Life Cycle Assessment of Geotechnical Works in Building Construction: A Review and Recommendations," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    11. Zhang, Chunbo & Hu, Mingming & Laclau, Benjamin & Garnesson, Thomas & Yang, Xining & Tukker, Arnold, 2021. "Energy-carbon-investment payback analysis of prefabricated envelope-cladding system for building energy renovation: Cases in Spain, the Netherlands, and Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    12. Marshall, Liz & Kelly, Alexia, 2010. "The Time Value of Carbon and Carbon Storage: Clarifying the terms and the policy implications of the debate," MPRA Paper 27326, University Library of Munich, Germany.
    13. Lee, Nayoon & Tae, Sungho & Gong, Yuri & Roh, Seungjun, 2017. "Integrated building life-cycle assessment model to support South Korea's green building certification system (G-SEED)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 43-50.
    14. Jim Hart & Bernardino D'Amico & Francesco Pomponi, 2021. "Whole‐life embodied carbon in multistory buildings: Steel, concrete and timber structures," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 403-418, April.
    15. Robert Karaszewski & Paweł Modrzyński & Gözde Türkmen Müldür & Jacek Wójcik, 2021. "Blockchain Technology in Life Cycle Assessment—New Research Trends," Energies, MDPI, vol. 14(24), pages 1-13, December.
    16. Pierobon, Francesca & Zanetti, Michela & Grigolato, Stefano & Sgarbossa, Andrea & Anfodillo, Tommaso & Cavalli, Raffaele, 2015. "Life cycle environmental impact of firewood production – A case study in Italy," Applied Energy, Elsevier, vol. 150(C), pages 185-195.
    17. Roh, Seungjun & Tae, Sungho, 2017. "An integrated assessment system for managing life cycle CO2 emissions of a building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 265-275.
    18. Minunno, Roberto & O'Grady, Timothy & Morrison, Gregory M. & Gruner, Richard L., 2021. "Investigating the embodied energy and carbon of buildings: A systematic literature review and meta-analysis of life cycle assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    19. Ningshuang Zeng & Yan Liu & Chao Mao & Markus König, 2018. "Investigating the Relationship between Construction Supply Chain Integration and Sustainable Use of Material: Evidence from China," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    20. Anand, Chirjiv Kaur & Amor, Ben, 2017. "Recent developments, future challenges and new research directions in LCA of buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 408-416.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:2020-:d:152579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.