IDEAS home Printed from https://ideas.repec.org/a/spr/busres/v13y2020i1d10.1007_s40685-019-0089-3.html
   My bibliography  Save this article

Stabilized-cycle strategy for a multi-item, capacitated, hierarchical production planning problem in rolling schedules

Author

Listed:
  • Malte Meistering

    (University of Hamburg)

  • Hartmut Stadtler

    (University of Hamburg)

Abstract

Little research has been done on hierarchical production planning systems (HPPS) in the context of rolling schedules with service-level constraints. Here, we adapt the stabilized-cycle strategy, which has initially been created for the master planning level (Meistering and Stadtler in Prod Oper Manag 26:2247–2265, 2017), to a two-level, multi-item, capacitated (short-medium-term) HPPS with demand uncertainty. For each planning level, we present extensions for mixed-integer programming models from literature (CLSP-L, PLSP) and introduce anticipation functions, as well as linking constraints. In a computational study, we analyze the performance of the HPPS with different rolling schedule strategies: the period-based, the order-based, and the stabilized-cycle strategy. It turns out that the stabilized-cycle strategy dominates the period-based strategy for all studied instances. For some instances, the stabilized-cycle strategy even dominates the order-based strategy; while in remaining instances, the stabilized-cycle strategy provides non-dominated solutions with a significant smaller downside deviation from service-level agreements and only a minor increase of costs.

Suggested Citation

  • Malte Meistering & Hartmut Stadtler, 2020. "Stabilized-cycle strategy for a multi-item, capacitated, hierarchical production planning problem in rolling schedules," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 3-38, April.
  • Handle: RePEc:spr:busres:v:13:y:2020:i:1:d:10.1007_s40685-019-0089-3
    DOI: 10.1007/s40685-019-0089-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40685-019-0089-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s40685-019-0089-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher Suerie & Hartmut Stadtler, 2003. "The Capacitated Lot-Sizing Problem with Linked Lot Sizes," Management Science, INFORMS, vol. 49(8), pages 1039-1054, August.
    2. Tom Vogel & Bernardo Almada-Lobo & Christian Almeder, 2017. "Integrated versus hierarchical approach to aggregate production planning and master production scheduling," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 193-229, January.
    3. Fleischmann, B. & Meyr, H., 2003. "Planning Hierarchy, Modeling and Advanced Planning Systems," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 36714, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. James H. Bookbinder & Jin-Yan Tan, 1988. "Strategies for the Probabilistic Lot-Sizing Problem with Service-Level Constraints," Management Science, INFORMS, vol. 34(9), pages 1096-1108, September.
    5. Brian Wieland & Pat Mastrantonio & Sean P. Willems & Karl G. Kempf, 2012. "Optimizing Inventory Levels Within Intel's Channel Supply Demand Operations," Interfaces, INFORMS, vol. 42(6), pages 517-527, December.
    6. Schneeweiss, Christoph, 2003. "Distributed decision making--a unified approach," European Journal of Operational Research, Elsevier, vol. 150(2), pages 237-252, October.
    7. Hartmut Stadtler & Bernhard Fleischmann & Martin Grunow & Herbert Meyr & Christopher Sürie, 2012. "Advanced Planning in Supply Chains," Management for Professionals, Springer, number 978-3-642-24215-1, December.
    8. Stadtler, Hartmut, 2000. "Improved rolling schedules for the dynamic single level lot sizing problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 14079, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    9. Gabriel R. Bitran & Elizabeth A. Haas & Arnoldo C. Hax, 1981. "Hierarchical Production Planning: A Single Stage System," Operations Research, INFORMS, vol. 29(4), pages 717-743, August.
    10. Douglas J. Thomas, 2005. "Measuring Item Fill-Rate Performance in a Finite Horizon," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 74-80, September.
    11. Suerie, Christopher & Stadtler, Hartmut, 2003. "The Capacitated lot-sizing problem with linked lot sizes," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 20206, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    12. Hartmut Stadtler, 2000. "Improved Rolling Schedules for the Dynamic Single-Level Lot-Sizing Problem," Management Science, INFORMS, vol. 46(2), pages 318-326, February.
    13. Hartmut Stadtler & Bernhard Fleischmann, 2012. "Hierarchical Planning and the Supply Chain Planning Matrix," Management for Professionals, in: Advanced Planning in Supply Chains, chapter 0, pages 21-34, Springer.
    14. Tempelmeier, Horst, 2011. "A column generation heuristic for dynamic capacitated lot sizing with random demand under a fill rate constraint," Omega, Elsevier, vol. 39(6), pages 627-633, December.
    15. Xie, Jinxing & Zhao, Xiande & Lee, T. S., 2003. "Freezing the master production schedule under single resource constraint and demand uncertainty," International Journal of Production Economics, Elsevier, vol. 83(1), pages 65-84, January.
    16. Gabriel R. Bitran & Elizabeth A. Haas & Arnoldo C. Hax, 1982. "Hierarchical Production Planning: A Two-Stage System," Operations Research, INFORMS, vol. 30(2), pages 232-251, April.
    17. M. Florian & J. K. Lenstra & A. H. G. Rinnooy Kan, 1980. "Deterministic Production Planning: Algorithms and Complexity," Management Science, INFORMS, vol. 26(7), pages 669-679, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hartmut Stadtler & Malte Meistering, 2019. "Model formulations for the capacitated lot-sizing problem with service-level constraints," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 1025-1056, December.
    2. Jans, R.F. & Degraeve, Z., 2005. "Modeling Industrial Lot Sizing Problems: A Review," ERIM Report Series Research in Management ERS-2005-049-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    3. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    4. Tom Vogel & Bernardo Almada-Lobo & Christian Almeder, 2017. "Integrated versus hierarchical approach to aggregate production planning and master production scheduling," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 193-229, January.
    5. Jenny Carolina Saldana Cortés, 2011. "Programación semidefinida aplicada a problemas de cantidad económica de pedido," Documentos CEDE 8735, Universidad de los Andes, Facultad de Economía, CEDE.
    6. Awi Federgruen & Joern Meissner & Michal Tzur, 2007. "Progressive Interval Heuristics for Multi-Item Capacitated Lot-Sizing Problems," Operations Research, INFORMS, vol. 55(3), pages 490-502, June.
    7. Sahin, Funda & Powell Robinson, E. & Gao, Li-Lian, 2008. "Master production scheduling policy and rolling schedules in a two-stage make-to-order supply chain," International Journal of Production Economics, Elsevier, vol. 115(2), pages 528-541, October.
    8. Meixell, Mary J., 2005. "The impact of setup costs, commonality, and capacity on schedule stability: An exploratory study," International Journal of Production Economics, Elsevier, vol. 95(1), pages 95-107, January.
    9. Narayanan, Arunachalam & Robinson, Powell, 2010. "Evaluation of joint replenishment lot-sizing procedures in rolling horizon planning systems," International Journal of Production Economics, Elsevier, vol. 127(1), pages 85-94, September.
    10. G. Rius-Sorolla & J. Maheut & S. Estellés-Miguel & J. P. García-Sabater, 2021. "Operations planning test bed under rolling horizons, multiproduct, multiechelon, multiprocess for capacitated production planning modelling with strokes," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1289-1315, December.
    11. Chen, Haoxun, 2015. "Fix-and-optimize and variable neighborhood search approaches for multi-level capacitated lot sizing problems," Omega, Elsevier, vol. 56(C), pages 25-36.
    12. Tian, Feng & Willems, Sean P. & Kempf, Karl G., 2011. "An iterative approach to item-level tactical production and inventory planning," International Journal of Production Economics, Elsevier, vol. 133(1), pages 439-450, September.
    13. Stefano Coniglio & Arie M. C. A. Koster & Nils Spiekermann, 2018. "Lot sizing with storage losses under demand uncertainty," Journal of Combinatorial Optimization, Springer, vol. 36(3), pages 763-788, October.
    14. Rossi, Roberto & Kilic, Onur A. & Tarim, S. Armagan, 2015. "Piecewise linear approximations for the static–dynamic uncertainty strategy in stochastic lot-sizing," Omega, Elsevier, vol. 50(C), pages 126-140.
    15. Wilco Van den Heuvel & Albert P. M. Wagelmans, 2010. "Worst-Case Analysis for a General Class of Online Lot-Sizing Heuristics," Operations Research, INFORMS, vol. 58(1), pages 59-67, February.
    16. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    17. Wei, Mingyuan & Qi, Mingyao & Wu, Tao & Zhang, Canrong, 2019. "Distance and matching-induced search algorithm for the multi-level lot-sizing problem with substitutable bill of materials," European Journal of Operational Research, Elsevier, vol. 277(2), pages 521-541.
    18. Akhtari, Shaghaygh & Sowlati, Taraneh & Griess, Verena C., 2018. "Integrated strategic and tactical optimization of forest-based biomass supply chains to consider medium-term supply and demand variations," Applied Energy, Elsevier, vol. 213(C), pages 626-638.
    19. Koca, Esra & Yaman, Hande & Selim Aktürk, M., 2015. "Stochastic lot sizing problem with controllable processing times," Omega, Elsevier, vol. 53(C), pages 1-10.
    20. Charles, Mehdi & Dauzère-Pérès, Stéphane & Kedad-Sidhoum, Safia & Mazhoud, Issam, 2022. "Motivations and analysis of the capacitated lot-sizing problem with setup times and minimum and maximum ending inventories," European Journal of Operational Research, Elsevier, vol. 302(1), pages 203-220.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:busres:v:13:y:2020:i:1:d:10.1007_s40685-019-0089-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.