IDEAS home Printed from https://ideas.repec.org/a/spr/binfse/v62y2020i1d10.1007_s12599-019-00592-5.html
   My bibliography  Save this article

Scheduling Flexible Demand in Cloud Computing Spot Markets

Author

Listed:
  • Robert Keller

    (University of Bayreuth)

  • Lukas Häfner

    (University of Augsburg)

  • Thomas Sachs

    (University of Bayreuth)

  • Gilbert Fridgen

    (University of Bayreuth)

Abstract

The rapid standardization and specialization of cloud computing services have led to the development of cloud spot markets on which cloud service providers and customers can trade in near real-time. Frequent changes in demand and supply give rise to spot prices that vary throughout the day. Cloud customers often have temporal flexibility to execute their jobs before a specific deadline. In this paper, the authors apply real options analysis (ROA), which is an established valuation method designed to capture the flexibility of action under uncertainty. They adapt and compare multiple discrete-time approaches that enable cloud customers to quantify and exploit the monetary value of their short-term temporal flexibility. The paper contributes to the field by guaranteeing cloud job execution of variable-time requests in a single cloud spot market, whereas existing multi-market strategies may not fulfill requests when outbid. In a broad simulation of scenarios for the use of Amazon EC2 spot instances, the developed approaches exploit the existing savings potential up to 40 percent – a considerable extent. Moreover, the results demonstrate that ROA, which explicitly considers time-of-day-specific spot price patterns, outperforms traditional option pricing models and expectation optimization.

Suggested Citation

  • Robert Keller & Lukas Häfner & Thomas Sachs & Gilbert Fridgen, 2020. "Scheduling Flexible Demand in Cloud Computing Spot Markets," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 62(1), pages 25-39, February.
  • Handle: RePEc:spr:binfse:v:62:y:2020:i:1:d:10.1007_s12599-019-00592-5
    DOI: 10.1007/s12599-019-00592-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12599-019-00592-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12599-019-00592-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George H. K. Wang & Jot Yau, 2000. "Trading volume, bid–ask spread, and price volatility in futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 20(10), pages 943-970, November.
    2. Yisong Tian, 1993. "A modified lattice approach to option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 13(5), pages 563-577, August.
    3. Van Hulle, Cynthia, 1988. "Option pricing methods: an overview," Insurance: Mathematics and Economics, Elsevier, vol. 7(3), pages 139-152, October.
    4. Myers, Stewart C., 1977. "Determinants of corporate borrowing," Journal of Financial Economics, Elsevier, vol. 5(2), pages 147-175, November.
    5. Christian Ullrich, 2013. "Valuation of IT Investments Using Real Options Theory," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 5(5), pages 331-341, October.
    6. Dietmar Leisen & Matthias Reimer, 1996. "Binomial models for option valuation - examining and improving convergence," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(4), pages 319-346.
    7. F. Wu & H. Li & L. Chu & D. Sculli & K. Gao, 2009. "An approach to the valuation and decision of ERP investment projects based on real options," Annals of Operations Research, Springer, vol. 168(1), pages 181-203, April.
    8. Michel Benaroch & Robert J. Kauffman, 1999. "A Case for Using Real Options Pricing Analysis to Evaluate Information Technology Project Investments," Information Systems Research, INFORMS, vol. 10(1), pages 70-86, March.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. Fridgen, Gilbert & Keller, Robert & Thimmel, Markus & Wederhake, Lars, 2017. "Shifting load through space–The economics of spatial demand side management using distributed data centers," Energy Policy, Elsevier, vol. 109(C), pages 400-413.
    11. Markus Lilienthal, 2013. "A Decision Support Model for Cloud Bursting," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 5(2), pages 71-81, April.
    12. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    13. Amin, Kaushik I., 1991. "On the Computation of Continuous Time Option Prices Using Discrete Approximations," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(4), pages 477-495, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gilbert Fridgen & Marc-Fabian Körner & Steffen Walters & Martin Weibelzahl, 2021. "Not All Doom and Gloom: How Energy-Intensive and Temporally Flexible Data Center Applications May Actually Promote Renewable Energy Sources," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(3), pages 243-256, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bettina Freitag & Lukas Häfner & Verena Pfeuffer & Jochen Übelhör, 2020. "Evaluating investments in flexible on-demand production capacity: a real options approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 133-161, April.
    2. Marcel Philipp Müller & Sebastian Stöckl & Steffen Zimmermann & Bernd Heinrich, 2016. "Decision Support for IT Investment Projects," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 58(6), pages 381-396, December.
    3. Ghafarian, Bahareh & Hanafizadeh, Payam & Qahi, Amir Hossein Mortazavi, 2018. "Applying Greek letters to robust option price modeling by binomial-tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 632-639.
    4. Jorge Tarifa-Fernández & Ana María Sánchez-Pérez & Salvador Cruz-Rambaud, 2019. "Internet of Things and Their Coming Perspectives: A Real Options Approach," Sustainability, MDPI, vol. 11(11), pages 1-15, June.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. Qianru Shang & Brian Byrne, 2021. "American option pricing: Optimal Lattice models and multidimensional efficiency tests," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(4), pages 514-535, April.
    7. Leisen, Dietmar P. J., 1999. "The random-time binomial model," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1355-1386, September.
    8. Joost Buurman & Stephen Zhang & Vladan Babovic, 2009. "Reducing Risk Through Real Options in Systems Design: The Case of Architecting a Maritime Domain Protection System," Risk Analysis, John Wiley & Sons, vol. 29(3), pages 366-379, March.
    9. Christoph Woster, 2010. "An efficient algorithm for pricing barrier options in arbitrage-free binomial models with calibrated drift terms," Quantitative Finance, Taylor & Francis Journals, vol. 10(5), pages 555-564.
    10. Josheski Dushko & Apostolov Mico, 2020. "A Review of the Binomial and Trinomial Models for Option Pricing and their Convergence to the Black-Scholes Model Determined Option Prices," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 24(2), pages 53-85, June.
    11. Kyungwon Kim & Jae Wook Song, 2018. "Managing Bubbles in the Korean Real Estate Market: A Real Options Framework," Sustainability, MDPI, vol. 10(8), pages 1-25, August.
    12. Shvimer, Yossi & Herbon, Avi, 2020. "Comparative empirical study of binomial call-option pricing methods using S&P 500 index data," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    13. Pier Giuseppe Giribone & Simone Ligato, 2016. "Flexible-forward pricing through Leisen–Reimer trees: Implementation and performance comparison with traditional Markov chains," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-21, June.
    14. Carlos Andrés Zapata Quimbayo, 2020. "OPCIONES REALES Una guía teórico-práctica para la valoración de inversiones bajo incertidumbre mediante modelos en tiempo discreto y simulación de Monte Carlo," Books, Universidad Externado de Colombia, Facultad de Finanzas, Gobierno y Relaciones Internacionales, number 138, August.
    15. Collan, Mikael, 2004. "Giga-Investments: Modelling the Valuation of Very Large Industrial Real Investments," MPRA Paper 4328, University Library of Munich, Germany.
    16. Christian Ullrich, 2013. "Valuation of IT Investments Using Real Options Theory," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 5(5), pages 331-341, October.
    17. San-Lin Chung & Pai-Ta Shih, 2007. "Generalized Cox-Ross-Rubinstein Binomial Models," Management Science, INFORMS, vol. 53(3), pages 508-520, March.
    18. Dapena, Jose Pablo, 2003. "On the Valuation of Companies with Growth Opportunities," Journal of Applied Economics, Universidad del CEMA, vol. 6(1), pages 1-24, May.
    19. Balibrea-Iniesta, José & Rodríguez-Monroy, Carlos & Núñez-Guerrero, Yilsy María, 2021. "Economic analysis of the German regulation for electrical generation projects from biogas applying the theory of real options," Energy, Elsevier, vol. 231(C).
    20. Borges da Silva, Eduardo & Moreno Cordeiro de Sousa, Alexandre, 2022. "Avaliação econômico-financeira de fintechs no mercado brasileiro: o caso INTER [Economic and financial evaluation of fintech in the Brazilian market: the case of INTER]," MPRA Paper 115509, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:binfse:v:62:y:2020:i:1:d:10.1007_s12599-019-00592-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.