IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v300y2021i2d10.1007_s10479-019-03297-w.html
   My bibliography  Save this article

Technology adoption with carbon emission trading mechanism: modeling with heterogeneous agents and uncertain carbon price

Author

Listed:
  • Chenhao Fang

    (East China University of Science and Technology)

  • Tieju Ma

    (East China University of Science and Technology
    International Institute for Applied Systems Analysis)

Abstract

The adoption of new technologies with high efficiency and low emissions is of great importance in achieving sustainable development. Most studies of technology adoption have been criticized for idealistically assuming only one global decision agent. In this paper, an optimization model of technology adoption with heterogeneous agents is proposed. These agents have different market shares, and each one attempts to identify the optimal technology adoption for a portion of the entire system. The carbon emission trading mechanism is implemented to reduce carbon emissions. Agents’ acceptance of uncertain carbon prices is characterized by calculating their willingness to pay, and a bargaining process is introduced to reasonably allocate the profit. Computational tests are conducted with different market shares and different discounting factors. Numerical results show that implementing the carbon emission trading mechanism is an effective way to promote technology adoption and carbon emission reduction, although it does not certainly lead to less carbon emissions than implementing only a carbon cap. A small gap between agents’ market shares and an increase in the seller’s discounting factor will lead to more adoption in the entire system. A seller’s market may lead to less carbon emissions than implementing only a carbon cap, while a buyer’s market may lead to more carbon emissions. Moreover, it is suggested that governments can propose incentive policies to support small companies to develop and maintain carbon prices at a reasonable level to benefit sellers to promote technology adoption.

Suggested Citation

  • Chenhao Fang & Tieju Ma, 2021. "Technology adoption with carbon emission trading mechanism: modeling with heterogeneous agents and uncertain carbon price," Annals of Operations Research, Springer, vol. 300(2), pages 577-600, May.
  • Handle: RePEc:spr:annopr:v:300:y:2021:i:2:d:10.1007_s10479-019-03297-w
    DOI: 10.1007/s10479-019-03297-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03297-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03297-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rubinstein, Ariel, 1982. "Perfect Equilibrium in a Bargaining Model," Econometrica, Econometric Society, vol. 50(1), pages 97-109, January.
    2. Liu, Xianbing & Fan, Yongbin & Li, Chen, 2016. "Carbon pricing for low carbon technology diffusion: A survey analysis of China's cement industry," Energy, Elsevier, vol. 106(C), pages 73-86.
    3. S. Yu & H.-P. Weikard & X. Zhu & E. C. Ierland, 2017. "International carbon trade with constrained allowance choices: Results from the STACO model," Annals of Operations Research, Springer, vol. 255(1), pages 95-116, August.
    4. Lin, Boqiang & Li, Jianglong, 2015. "Analyzing cost of grid-connection of renewable energy development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1373-1382.
    5. Ma-Lin Song & Wei Zhang & Xiao-Ming Qiu, 2015. "Emissions trading system and supporting policies under an emissions reduction framework," Annals of Operations Research, Springer, vol. 228(1), pages 125-134, May.
    6. Ma, T. & Grubler, A. & Nakamori, Y., 2009. "Modeling technology adoptions for sustainable development under increasing returns, uncertainty, and heterogeneous agents," European Journal of Operational Research, Elsevier, vol. 195(1), pages 296-306, May.
    7. Zhimin Huang & Yi-Ming Wei & Ke Wang & Hua Liao, 2017. "Energy economics and climate policy modeling," Annals of Operations Research, Springer, vol. 255(1), pages 1-7, August.
    8. S. Du & F. Ma & Z. Fu & L. Zhu & J. Zhang, 2015. "Game-theoretic analysis for an emission-dependent supply chain in a ‘cap-and-trade’ system," Annals of Operations Research, Springer, vol. 228(1), pages 135-149, May.
    9. Guo, Jian-Xin & Zhu, Lei & Fan, Ying, 2016. "Emission path planning based on dynamic abatement cost curve," European Journal of Operational Research, Elsevier, vol. 255(3), pages 996-1013.
    10. Tieju Ma, 2010. "Coping with Uncertainties in Technological Learning," Management Science, INFORMS, vol. 56(1), pages 192-201, January.
    11. Cong, Rong-Gang & Wei, Yi-Ming, 2010. "Potential impact of (CET) carbon emissions trading on China’s power sector: A perspective from different allowance allocation options," Energy, Elsevier, vol. 35(9), pages 3921-3931.
    12. Arthur, W Brian, 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events," Economic Journal, Royal Economic Society, vol. 99(394), pages 116-131, March.
    13. Ding, Huiping & Zhao, Qilan & An, Zhirong & Tang, Ou, 2016. "Collaborative mechanism of a sustainable supply chain with environmental constraints and carbon caps," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 191-207.
    14. Sabzevar, Nikoo & Enns, S.T. & Bergerson, Joule & Kettunen, Janne, 2017. "Modeling competitive firms' performance under price-sensitive demand and cap-and-trade emissions constraints," International Journal of Production Economics, Elsevier, vol. 184(C), pages 193-209.
    15. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    16. R. H. Coase, 2013. "The Problem of Social Cost," Journal of Law and Economics, University of Chicago Press, vol. 56(4), pages 837-877.
    17. Mohamed Amine Boutabba & Sandrine Lardic, 2017. "EU Emissions Trading Scheme, competitiveness and carbon leakage: new evidence from cement and steel industries," Post-Print hal-02877954, HAL.
    18. Tang, Ling & Wu, Jiaqian & Yu, Lean & Bao, Qin, 2015. "Carbon emissions trading scheme exploration in China: A multi-agent-based model," Energy Policy, Elsevier, vol. 81(C), pages 152-169.
    19. Eva Camacho-Cuena & Till Requate & Israel Waichman, 2012. "Investment Incentives Under Emission Trading: An Experimental Study," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 53(2), pages 229-249, October.
    20. Chen, Huayi & Ma, Tieju, 2017. "Optimizing systematic technology adoption with heterogeneous agents," European Journal of Operational Research, Elsevier, vol. 257(1), pages 287-296.
    21. Yue-Jun Zhang & Jun-Fang Hao, 2017. "Carbon emission quota allocation among China’s industrial sectors based on the equity and efficiency principles," Annals of Operations Research, Springer, vol. 255(1), pages 117-140, August.
    22. Ciwei Dong & Bin Shen & Pui-Sze Chow & Liu Yang & Chi To Ng, 2016. "Sustainability investment under cap-and-trade regulation," Annals of Operations Research, Springer, vol. 240(2), pages 509-531, May.
    23. Zhimin Huang & Yiming Wei & Ke Wang & Hua Liao (ed.), 2017. "Energy economics and climate policy modeling," CEEP-BIT Books, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology, number b15, december.
    24. Mohamed Amine Boutabba & Sandrine Lardic, 2017. "EU Emissions Trading Scheme, competitiveness and carbon leakage: new evidence from cement and steel industries," Annals of Operations Research, Springer, vol. 255(1), pages 47-61, August.
    25. Mélanie Heugues, 2014. "International environmental cooperation: a new eye on the greenhouse gas emissions’ control," Annals of Operations Research, Springer, vol. 220(1), pages 239-262, September.
    26. Chen, Huayi & Ma, Tieju, 2014. "Technology adoption with limited foresight and uncertain technological learning," European Journal of Operational Research, Elsevier, vol. 239(1), pages 266-275.
    27. E. Allevi & A. Gnudi & I. V. Konnov & G. Oggioni, 2018. "Evaluating the effects of environmental regulations on a closed-loop supply chain network: a variational inequality approach," Annals of Operations Research, Springer, vol. 261(1), pages 1-43, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chai, Shanglei & Yang, Xiaoli & Zhang, Zhen & Abedin, Mohammad Zoynul & Lucey, Brian, 2022. "Regional imbalances of market efficiency in China’s pilot emission trading schemes (ETS): A multifractal perspective," Research in International Business and Finance, Elsevier, vol. 63(C).
    2. Wen-Hsien Tsai & Shang-Yu Lai & Chu-Lun Hsieh, 2023. "Exploring the impact of different carbon emission cost models on corporate profitability," Annals of Operations Research, Springer, vol. 322(1), pages 41-74, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Chenhao & Ma, Tieju, 2020. "Stylized agent-based modeling on linking emission trading systems and its implications for China's practice," Energy Economics, Elsevier, vol. 92(C).
    2. Chen, Huayi & Zhou, P., 2019. "Modeling systematic technology adoption: Can one calibrated representative agent represent heterogeneous agents?," Omega, Elsevier, vol. 89(C), pages 257-270.
    3. Ma, Tieju & Chen, Huayi, 2015. "Adoption of an emerging infrastructure with uncertain technological learning and spatial reconfiguration," European Journal of Operational Research, Elsevier, vol. 243(3), pages 995-1003.
    4. Shaofu Du & Jun Qian & Tianzhuo Liu & Li Hu, 2020. "Emission allowance allocation mechanism design: a low-carbon operations perspective," Annals of Operations Research, Springer, vol. 291(1), pages 247-280, August.
    5. Tajbakhsh, Alireza & Hassini, Elkafi, 2022. "A game-theoretic approach for pollution control initiatives," International Journal of Production Economics, Elsevier, vol. 254(C).
    6. Chen, Huayi & Ma, Tieju, 2017. "Optimizing systematic technology adoption with heterogeneous agents," European Journal of Operational Research, Elsevier, vol. 257(1), pages 287-296.
    7. Chen, Huayi & Ma, Tieju, 2021. "Technology adoption and carbon emissions with dynamic trading among heterogeneous agents," Energy Economics, Elsevier, vol. 99(C).
    8. Jiasen Sun & Guo Li, 2020. "Designing a double auction mechanism for the re-allocation of emission permits," Annals of Operations Research, Springer, vol. 291(1), pages 847-874, August.
    9. Hong, Zhaofu & Chu, Chengbin & Zhang, Linda L. & Yu, Yugang, 2017. "Optimizing an emission trading scheme for local governments: A Stackelberg game model and hybrid algorithm," International Journal of Production Economics, Elsevier, vol. 193(C), pages 172-182.
    10. Chen, Huayi & Ma, Tieju, 2014. "Technology adoption with limited foresight and uncertain technological learning," European Journal of Operational Research, Elsevier, vol. 239(1), pages 266-275.
    11. Chi, Chunjie & Ma, Tieju & Zhu, Bing, 2012. "Towards a low-carbon economy: Coping with technological bifurcations with a carbon tax," Energy Economics, Elsevier, vol. 34(6), pages 2081-2088.
    12. Jiang, Jingjing & Xie, Dejun & Ye, Bin & Shen, Bo & Chen, Zhanming, 2016. "Research on China’s cap-and-trade carbon emission trading scheme: Overview and outlook," Applied Energy, Elsevier, vol. 178(C), pages 902-917.
    13. Junjun Zheng & Mingmiao Yang & Gang Ma & Qian Xu & Yujie He, 2020. "Multi-Agents-Based Modeling and Simulation for Carbon Permits Trading in China: A Regional Development Perspective," IJERPH, MDPI, vol. 17(1), pages 1-20, January.
    14. Stolpe, Michael, 1995. "Technology and the dynamics of specialization in open economies," Open Access Publications from Kiel Institute for the World Economy 738, Kiel Institute for the World Economy (IfW Kiel).
    15. Ma, Xueli & Wang, Jian & Bai, Qingguo & Wang, Shuyun, 2020. "Optimization of a three-echelon cold chain considering freshness-keeping efforts under cap-and-trade regulation in Industry 4.0," International Journal of Production Economics, Elsevier, vol. 220(C).
    16. Zhang, Yue-Jun & Wang, Wei, 2021. "How does China's carbon emissions trading (CET) policy affect the investment of CET-covered enterprises?," Energy Economics, Elsevier, vol. 98(C).
    17. Yang, Huixiao & Luo, Jianwen & Wang, Haijun, 2017. "The role of revenue sharing and first-mover advantage in emission abatement with carbon tax and consumer environmental awareness," International Journal of Production Economics, Elsevier, vol. 193(C), pages 691-702.
    18. Chang-Jing Ji & Yu-Jie Hu & Bao-Jun Tang, 2018. "Research on carbon market price mechanism and influencing factors: a literature review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 761-782, June.
    19. E. Allevi & A. Gnudi & I. V. Konnov & G. Oggioni, 2018. "Decomposition method for oligopolistic competitive models with common environmental regulation," Annals of Operations Research, Springer, vol. 268(1), pages 441-467, September.
    20. Élodie Bertrand, 2006. "La thèse d'efficience du « théorème de Coase ». Quelle critique de la microéconomie ?," Revue économique, Presses de Sciences-Po, vol. 57(5), pages 983-1007.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:300:y:2021:i:2:d:10.1007_s10479-019-03297-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.