IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v15y2004i6p991-1009.html
   My bibliography  Save this article

Equating Efficiency with Reduction: A Self-Deception in Energy Policy

Author

Listed:
  • Harold Wilhite

    (University of Oslo, Centre for Development and the Environment, P. O. Box 1116 Blindern, N-0317 Oslo, Norway)

  • Jorgen S. Norgard

    (Technical University of Denmark, Department of Civil Engineering, Building 118, DTU DK 2800 Lyngby, Denmark)

Abstract

European energy policy has not faced up to something about which there is increasingly little doubt: Global reduction, or even stabilisation in energy use will not be achieved unless Europe and the other rich OECD countries aim at significantly curbing their energy services (heat, light, motive power, mobility and so on). The policy makers at the centre of the policy discourse on energy sustainability suffer from a form for self-deception which revolves around the equation of ‘efficiency’ with ‘reduction’ and ‘sustainability’, i.e., the untenable contention that technological and market efficiency alone will offset continued growth in energy services to the extent that deep reductions in energy use are possible. Many researchers and environmentalists seem to have, partly for strategic reasons, adapted to this view and thereby supported politicians in the self-deception. In this paper we use results from India and China, with more than one third of the world population, to show how there is likely to be dramatic increases in energy use and greenhouse gas emissions in those countries over the next half-century. Much of this increase will be in conjunction with the development of basic services and infrastructure for homes, businesses, transport, health and public services, so that it is neither ethical nor even practical to argue for restrictions in overall energy growth in these and other developing countries. This places the onus for deep reductions in energy use on Europe, North America and the other affluent countries. The paper explores what such a change of focus would mean for policy and research agendas, and why there is friction to moving the policy envelope from ‘efficiency’ to also include ‘sufficiency’.

Suggested Citation

  • Harold Wilhite & Jorgen S. Norgard, 2004. "Equating Efficiency with Reduction: A Self-Deception in Energy Policy," Energy & Environment, , vol. 15(6), pages 991-1009, November.
  • Handle: RePEc:sae:engenv:v:15:y:2004:i:6:p:991-1009
    DOI: 10.1260/0958305043026618
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1260/0958305043026618
    Download Restriction: no

    File URL: https://libkey.io/10.1260/0958305043026618?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Amory B. Lovins, 1988. "Energy Saving from the Adoption of More Efficient Appliances: Another View," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 155-170.
    2. Herring, Horace, 1999. "Does energy efficiency save energy? The debate and its consequences," Applied Energy, Elsevier, vol. 63(3), pages 209-226, July.
    3. Harty D. Saunders, 1992. "The Khazzoom-Brookes Postulate and Neoclassical Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 131-148.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mundaca T., Luis, 2013. "Climate change and energy policy in Chile: Up in smoke?," Energy Policy, Elsevier, vol. 52(C), pages 235-248.
    2. Santarius, Tilman & Soland, Martin, 2018. "How Technological Efficiency Improvements Change Consumer Preferences: Towards a Psychological Theory of Rebound Effects," Ecological Economics, Elsevier, vol. 146(C), pages 414-424.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Freire-González, Jaume & Font Vivanco, David & Puig-Ventosa, Ignasi, 2017. "Economic structure and energy savings from energy efficiency in households," Ecological Economics, Elsevier, vol. 131(C), pages 12-20.
    2. Michael Huesemann & Joyce Huesemann, 2008. "Will progress in science and technology avert or accelerate global collapse? A critical analysis and policy recommendations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 10(6), pages 787-825, December.
    3. Freire-González, Jaume, 2017. "Evidence of direct and indirect rebound effect in households in EU-27 countries," Energy Policy, Elsevier, vol. 102(C), pages 270-276.
    4. Pragati Jain & Prerna Jain & Roopesh Kaushik, 2020. "How upright a public bus transport system is desirable for sustainable mobility?," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 0(1), pages 47-61.
    5. Achim Voß, 2015. "How Disagreement About Social Costs Leads to Inefficient Energy-Productivity Investment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 60(4), pages 521-548, April.
    6. Davood, Manzoor & Mohammad, Aghababaei & Haqiqi, Iman, 2011. "Rebound Effects Analysis of Electricity Efficiency Improvements in Iran: A Computable General Equilibrium Approach," MPRA Paper 95810, University Library of Munich, Germany.
    7. Lu, Yingying & Liu, Yu & Zhou, Meifang, 2017. "Rebound effect of improved energy efficiency for different energy types: A general equilibrium analysis for China," Energy Economics, Elsevier, vol. 62(C), pages 248-256.
    8. Koesler, Simon & Swales, Kim & Turner, Karen, 2016. "International spillover and rebound effects from increased energy efficiency in Germany," Energy Economics, Elsevier, vol. 54(C), pages 444-452.
    9. Janine De Fence & Nick Hanley & Karen Turner, 2009. "Do Productivity Improvements Move Us Along the Environmental Kuznets Curve?," Working Papers 0908, University of Strathclyde Business School, Department of Economics.
    10. Marion Drut, 2012. "Vers un système de transport opérant selon les principes de l'économie de la fonctionnalité," Working Papers hal-00992621, HAL.
    11. Santarius, Tilman & Soland, Martin, 2018. "How Technological Efficiency Improvements Change Consumer Preferences: Towards a Psychological Theory of Rebound Effects," Ecological Economics, Elsevier, vol. 146(C), pages 414-424.
    12. Anson, Sam & Turner, Karen, 2009. "Rebound and disinvestment effects in refined oil consumption and supply resulting from an increase in energy efficiency in the Scottish commercial transport sector," Energy Policy, Elsevier, vol. 37(9), pages 3608-3620, September.
    13. Alcott, Blake, 2005. "Jevons' paradox," Ecological Economics, Elsevier, vol. 54(1), pages 9-21, July.
    14. Heesen, Florian & Madlener, Reinhard, 2016. "Consumer Behavior in Energy-Efficient Homes: The Limited Merits of Energy Performance Ratings as Benchmarks," FCN Working Papers 17/2016, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    15. Tugba Somuncu & Christopher Hannum, 2018. "The Rebound Effect of Energy Efficiency Policy in the Presence of Energy Theft," Energies, MDPI, vol. 11(12), pages 1-28, December.
    16. Rongxin Wu & Boqiang Lin, 2022. "Does Energy Efficiency Realize Energy Conservation in the Iron and Steel Industry? A Perspective of Energy Rebound Effect," IJERPH, MDPI, vol. 19(18), pages 1-20, September.
    17. Turner, Karen, 2009. "Negative rebound and disinvestment effects in response to an improvement in energy efficiency in the UK economy," Energy Economics, Elsevier, vol. 31(5), pages 648-666, September.
    18. Cui, Cathy Xin & Ha, Soo Jung & Hanley, Nicholas & McGregor, Peter G & Turner, Karen & Yin, Ya Ping, 2011. "Productivity Growth, Decoupling and Pollution Leakage," Stirling Economics Discussion Papers 2011-13, University of Stirling, Division of Economics.
    19. Ayres, Robert U & Ayres, Leslie W & Warr, Benjamin, 2003. "Exergy, power and work in the US economy, 1900–1998," Energy, Elsevier, vol. 28(3), pages 219-273.
    20. David I. Stern, 2010. "The Role of Energy in Economic Growth," CCEP Working Papers 0310, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:15:y:2004:i:6:p:991-1009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.