IDEAS home Printed from https://ideas.repec.org/a/qnt/quantl/y2015i13p25-39.html
   My bibliography  Save this article

Alternative models for forecasting the key macroeconomic variables in Armenia (in Russian)

Author

Listed:
  • Karen Poghosyan

    (Central Bank of Armenia, Yerevan, Armenia)

Abstract

We evaluate the forecasting performance of three competing models for short-term macroeconomic forecasting: the traditional unrestricted VAR, Bayesian VAR, and Factor Augmented VAR. Using quarterly Armenian macroeconomic variables from 1996 to 2014, we estimate parameters of the three models. Based on the out-of-sample root mean squared error criterion we conclude on the most relevant model.

Suggested Citation

  • Karen Poghosyan, 2015. "Alternative models for forecasting the key macroeconomic variables in Armenia (in Russian)," Quantile, Quantile, issue 13, pages 25-39, May.
  • Handle: RePEc:qnt:quantl:y:2015:i:13:p:25-39
    as

    Download full text from publisher

    File URL: http://quantile.ru/13/13-KP.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabio Canova, 2007. "Bayesian Time Series and DSGE Models, from Methods for Applied Macroeconomic Research," Introductory Chapters, in: Methods for Applied Macroeconomic Research, Princeton University Press.
    2. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    3. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
    4. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
    5. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    6. Felix DUMITRESCU & Adriana PRODAN & Mihaela STOICA, 2014. "Implementing Small & Medium It Projects In Small & Medium Enterprises," Network Intelligence Studies, Romanian Foundation for Business Intelligence, Editorial Department, issue 3, pages 45-53, April.
    7. Pankaj SINHA & Sushant GUPTA & Nakul RANDEV, 2011. "Modeling & Forecasting Of Macro-Economic Variables Of India: Before, During & After Recession," Journal of Applied Economic Sciences, Spiru Haret University, Faculty of Financial Management and Accounting Craiova, vol. 6(1(15)/ Sp), pages 43-60.
    8. Gupta, Rangan & Kabundi, Alain, 2011. "A large factor model for forecasting macroeconomic variables in South Africa," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1076-1088, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    2. Christophe Bellégo & Laurent Ferrara, 2010. "A factor-augmented probit model for business cycle analysis," Working Papers hal-04140915, HAL.
    3. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    4. Matteo Luciani & Lorenzo Ricci, 2014. "Nowcasting Norway," International Journal of Central Banking, International Journal of Central Banking, vol. 10(4), pages 215-248, December.
    5. Karen Poghosyan & Ruben Poghosyan, 2021. "On the Applicability of Dynamic Factor Models for Forecasting Real GDP Growth in Armenia," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 71(1), pages 52-79, June.
    6. Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
    7. Calista Cheung & Frédérick Demers, 2007. "Evaluating Forecasts from Factor Models for Canadian GDP Growth and Core Inflation," Staff Working Papers 07-8, Bank of Canada.
    8. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    9. Kyle E. Binder & Mohsen Pourahmadi & James W. Mjelde, 2020. "The role of temporal dependence in factor selection and forecasting oil prices," Empirical Economics, Springer, vol. 58(3), pages 1185-1223, March.
    10. Tjeerd M. Boonman & Jan P.A.M. Jacobs & Gerard H. Kuper, 2011. "Why didn't the Global Financial Crisis hit Latin America?," CIRANO Working Papers 2011s-63, CIRANO.
    11. Pirschel, Inske & Wolters, Maik, 2014. "Forecasting German key macroeconomic variables using large dataset methods," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100587, Verein für Socialpolitik / German Economic Association.
    12. Inske Pirschel & Maik H. Wolters, 2018. "Forecasting with large datasets: compressing information before, during or after the estimation?," Empirical Economics, Springer, vol. 55(2), pages 573-596, September.
    13. Branimir, Jovanovic & Magdalena, Petrovska, 2010. "Forecasting Macedonian GDP: Evaluation of different models for short-term forecasting," MPRA Paper 43162, University Library of Munich, Germany.
    14. Branimir Jovanovic & Magdalena Petrovska, 2010. "Forecasting Macedonian GDP: Evaluation of different models for short-term forecasting," Working Papers 2010-02, National Bank of the Republic of North Macedonia, revised Aug 2010.
    15. Duangnate, Kannika & Mjelde, James W., 2017. "Comparison of data-rich and small-scale data time series models generating probabilistic forecasts: An application to U.S. natural gas gross withdrawals," Energy Economics, Elsevier, vol. 65(C), pages 411-423.
    16. Daniel Armeanu & Jean Vasile Andrei & Leonard Lache & Mirela Panait, 2017. "A multifactor approach to forecasting Romanian gross domestic product (GDP) in the short run," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-23, July.
    17. Evžen Kočenda & Karen Poghosyan, 2020. "Nowcasting Real GDP Growth: Comparison between Old and New EU Countries," Eastern European Economics, Taylor & Francis Journals, vol. 58(3), pages 197-220, May.
    18. Qin Zhang & He Ni & Hao Xu, 2023. "Forecasting models for the Chinese macroeconomy in a data‐rich environment: Evidence from large dimensional approximate factor models with mixed‐frequency data," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(1), pages 719-767, March.
    19. William T. Gavin & Kevin L. Kliesen, 2008. "Forecasting inflation and output: comparing data-rich models with simple rules," Review, Federal Reserve Bank of St. Louis, vol. 90(May), pages 175-192.
    20. Francisco Dias & Maximiano Pinheiro & António Rua, 2018. "A bottom-up approach for forecasting GDP in a data-rich environment," Applied Economics Letters, Taylor & Francis Journals, vol. 25(10), pages 718-723, June.

    More about this item

    Keywords

    vector autoregression; principal components; Bayesian estimation; macroeconomic indicators; Armenia;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qnt:quantl:y:2015:i:13:p:25-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stanislav Anatolyev (email available below). General contact details of provider: http://quantile.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.