IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v9y2022i1d10.1057_s41599-022-01171-y.html
   My bibliography  Save this article

Evaluation and drivers of global low-carbon economies based on satellite data

Author

Listed:
  • Jiandong Chen

    (Southwestern University of Finance and Economics)

  • Ming Gao

    (Southwestern University of Finance and Economics)

  • Shulei Cheng

    (Southwestern University of Finance and Economics)

  • Yiyin Xu

    (Chengdu University)

  • Malin Song

    (Anhui University of Finance and Economics)

  • Yu Liu

    (Chinese Academy of Sciences)

  • Wenxuan Hou

    (Shanghai Lixin University of Accounting and Finance
    University of Edinburgh)

  • Shuhong Wang

    (Shandong University of Finance and Economics)

Abstract

Global warming is one of the largest challenges humankind is facing in this century, and how to achieve low-carbon economy has become one of the most attractive topics of global concern. However, evaluations of the low-carbon economy are insufficient due to limited methodologies and data availability. In this study, satellite data (i.e., night-time light data and net primary production) were employed to estimate the net economic output (neo), and ratio of neo to the GDP (reo), which can be used to assess the quantity and quality of worldwide low-carbon economies. Based on panel vector autoregression (pvar) analysis, we further discussed the drivers of neo and reo in global climate change mitigation towards a better low-carbon society. The results show that: (1) only France and the United Kingdom ranked within the top 10 in terms of the neo and reo in 2019, implying that they were successful in increasing both quantity and quality of low-carbon economic development; (2) the pvar analysis presented that the increase of reo granger-caused neo growth, and net primary production increment greatly helped raise the worldwide reo; (3) raising CO2 abatement policy stringency can play a major role in improving the quality of low carbon economy countries with poor quantity and quality, but it cannot significantly promote groups with high reo. Additionally, the results of this study also provided basic data, such as our calibrated global 1 × 1 km gridded night-time light data during 1992–2019 for research regarding low-carbon economy and other sustainable development issues.

Suggested Citation

  • Jiandong Chen & Ming Gao & Shulei Cheng & Yiyin Xu & Malin Song & Yu Liu & Wenxuan Hou & Shuhong Wang, 2022. "Evaluation and drivers of global low-carbon economies based on satellite data," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.
  • Handle: RePEc:pal:palcom:v:9:y:2022:i:1:d:10.1057_s41599-022-01171-y
    DOI: 10.1057/s41599-022-01171-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-022-01171-y
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-022-01171-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert C. Feenstra & Robert Inklaar & Marcel P. Timmer, 2015. "The Next Generation of the Penn World Table," American Economic Review, American Economic Association, vol. 105(10), pages 3150-3182, October.
    2. Cameron Hepburn & Ella Adlen & John Beddington & Emily A. Carter & Sabine Fuss & Niall Mac Dowell & Jan C. Minx & Pete Smith & Charlotte K. Williams, 2019. "The technological and economic prospects for CO2 utilization and removal," Nature, Nature, vol. 575(7781), pages 87-97, November.
    3. Glen P. Peters & Robbie M. Andrew & Tom Boden & Josep G. Canadell & Philippe Ciais & Corinne Le Quéré & Gregg Marland & Michael R. Raupach & Charlie Wilson, 2013. "The challenge to keep global warming below 2 °C," Nature Climate Change, Nature, vol. 3(1), pages 4-6, January.
    4. Boussemart, Jean-Philippe & Leleu, Hervé & Shen, Zhiyang, 2017. "Worldwide carbon shadow prices during 1990–2011," Energy Policy, Elsevier, vol. 109(C), pages 288-296.
    5. Wu, Yinyin & Wang, Ping & Liu, Xin & Chen, Jiandong & Song, Malin, 2020. "Analysis of regional carbon allocation and carbon trading based on net primary productivity in China," China Economic Review, Elsevier, vol. 60(C).
    6. Wilhelm Althammer & Erik Hille, 2016. "Measuring climate policy stringency: a shadow price approach," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 23(4), pages 607-639, August.
    7. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-1395, November.
    8. Xu, Bin & Lin, Boqiang, 2015. "Carbon dioxide emissions reduction in China's transport sector: A dynamic VAR (vector autoregression) approach," Energy, Elsevier, vol. 83(C), pages 486-495.
    9. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.
    10. Yu Zhang & Liyin Shen & Chenyang Shuai & Yongtao Tan & Yitian Ren & Ya Wu, 2019. "Is the low‐carbon economy efficient in terms of sustainable development? A global perspective," Sustainable Development, John Wiley & Sons, Ltd., vol. 27(1), pages 130-152, January.
    11. Joeri Rogelj & Michel den Elzen & Niklas Höhne & Taryn Fransen & Hanna Fekete & Harald Winkler & Roberto Schaeffer & Fu Sha & Keywan Riahi & Malte Meinshausen, 2016. "Paris Agreement climate proposals need a boost to keep warming well below 2 °C," Nature, Nature, vol. 534(7609), pages 631-639, June.
    12. Lee, Myunghun & Zhang, Ning, 2012. "Technical efficiency, shadow price of carbon dioxide emissions, and substitutability for energy in the Chinese manufacturing industries," Energy Economics, Elsevier, vol. 34(5), pages 1492-1497.
    13. Carraro, Carlo & Favero, Alice & Massetti, Emanuele, 2012. "“Investments and public finance in a green, low carbon, economy”," Energy Economics, Elsevier, vol. 34(S1), pages 15-28.
    14. Guy Stecklov & Alexander Weinreb & Calogero Carletto, 2018. "Can incentives improve survey data quality in developing countries?: results from a field experiment in India," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1033-1056, October.
    15. Rajbhandari, Ashish & Zhang, Fan, 2018. "Does energy efficiency promote economic growth? Evidence from a multicountry and multisectoral panel dataset," Energy Economics, Elsevier, vol. 69(C), pages 128-139.
    16. Wei, Chu & Löschel, Andreas & Liu, Bing, 2013. "An empirical analysis of the CO2 shadow price in Chinese thermal power enterprises," Energy Economics, Elsevier, vol. 40(C), pages 22-31.
    17. Zeqiraj, Veton & Sohag, Kazi & Soytas, Ugur, 2020. "Stock market development and low-carbon economy: The role of innovation and renewable energy," Energy Economics, Elsevier, vol. 91(C).
    18. Chris Hope & Mat Hope, 2013. "The social cost of CO2 in a low-growth world," Nature Climate Change, Nature, vol. 3(8), pages 722-724, August.
    19. Fare, Rolf, et al, 1993. "Derivation of Shadow Prices for Undesirable Outputs: A Distance Function Approach," The Review of Economics and Statistics, MIT Press, vol. 75(2), pages 374-380, May.
    20. Fredriksson, Per G. & List, John A. & Millimet, Daniel L., 2003. "Bureaucratic corruption, environmental policy and inbound US FDI: theory and evidence," Journal of Public Economics, Elsevier, vol. 87(7-8), pages 1407-1430, August.
    21. Peter M. Cox & Richard A. Betts & Chris D. Jones & Steven A. Spall & Ian J. Totterdell, 2000. "Erratum: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model," Nature, Nature, vol. 408(6813), pages 750-750, December.
    22. Will R. Turner & Michael Oppenheimer & David S. Wilcove, 2009. "A force to fight global warming," Nature, Nature, vol. 462(7271), pages 278-279, November.
    23. Erik Hille, 2018. "Pollution havens: international empirical evidence using a shadow price measure of climate policy stringency," Empirical Economics, Springer, vol. 54(3), pages 1137-1171, May.
    24. Cheng, Yuanyuan & Yao, Xin, 2021. "Carbon intensity reduction assessment of renewable energy technology innovation in China: A panel data model with cross-section dependence and slope heterogeneity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    25. Víctor M. Guerrero & Juan A. Mendoza, 2019. "On measuring economic growth from outer space: a single country approach," Empirical Economics, Springer, vol. 57(3), pages 971-990, September.
    26. Peter M. Cox & Richard A. Betts & Chris D. Jones & Steven A. Spall & Ian J. Totterdell, 2000. "Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model," Nature, Nature, vol. 408(6809), pages 184-187, November.
    27. Tobias S. Schmidt, 2014. "Low-carbon investment risks and de-risking," Nature Climate Change, Nature, vol. 4(4), pages 237-239, April.
    28. J. Vernon Henderson & Adam Storeygard & David N. Weil, 2012. "Measuring Economic Growth from Outer Space," American Economic Review, American Economic Association, vol. 102(2), pages 994-1028, April.
    29. Hille, Erik & Shahbaz, Muhammad, 2019. "Sources of emission reductions: Market and policy-stringency effects," Energy Economics, Elsevier, vol. 78(C), pages 29-43.
    30. Zhang, Ping & Shi, XunPeng & Sun, YongPing & Cui, Jingbo & Shao, Shuai, 2019. "Have China's provinces achieved their targets of energy intensity reduction? Reassessment based on nighttime lighting data," Energy Policy, Elsevier, vol. 128(C), pages 276-283.
    31. Doll, Christopher N.H. & Muller, Jan-Peter & Morley, Jeremy G., 2006. "Mapping regional economic activity from night-time light satellite imagery," Ecological Economics, Elsevier, vol. 57(1), pages 75-92, April.
    32. Foxon, Timothy J., 2011. "A coevolutionary framework for analysing a transition to a sustainable low carbon economy," Ecological Economics, Elsevier, vol. 70(12), pages 2258-2267.
    33. Saša Stjepanović & Daniel Tomić & Marinko Škare, 2017. "A new approach to measuring green GDP: a cross-country analysis," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 4(4), pages 574-590, June.
    34. Keola, Souknilanh & Andersson, Magnus & Hall, Ola, 2015. "Monitoring Economic Development from Space: Using Nighttime Light and Land Cover Data to Measure Economic Growth," World Development, Elsevier, vol. 66(C), pages 322-334.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riquan Yao & Yingqun Fei & Zhong Wang & Xin Yao & Sasa Yang, 2023. "The Impact of China’s ETS on Corporate Green Governance Based on the Perspective of Corporate ESG Performance," IJERPH, MDPI, vol. 20(3), pages 1-16, January.
    2. Haisen Wang & Gangqiang Yang & Ziyang Yue, 2023. "Breaking through ingrained beliefs: revisiting the impact of the digital economy on carbon emissions," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-13, December.
    3. Gao, Ming, 2023. "The impacts of carbon trading policy on China's low-carbon economy based on county-level perspectives," Energy Policy, Elsevier, vol. 175(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yinyin & Yu, Jie & Song, Malin & Chen, Jiandong & Hou, Wenxuan, 2021. "Shadow prices of industrial air pollutant emissions in China," Economic Modelling, Elsevier, vol. 94(C), pages 726-736.
    2. Wang, Zhaohua & Song, Yanwu & Shen, Zhiyang, 2022. "Global sustainability of carbon shadow pricing: The distance between observed and optimal abatement costs," Energy Economics, Elsevier, vol. 110(C).
    3. Shen, Zhiyang & Bai, Kaixuan & Hong, Tianyang & Balezentis, Tomas, 2021. "Evaluation of carbon shadow price within a non-parametric meta-frontier framework: The case of OECD, ASEAN and BRICS," Applied Energy, Elsevier, vol. 299(C).
    4. Gao, Ming, 2023. "The impacts of carbon trading policy on China's low-carbon economy based on county-level perspectives," Energy Policy, Elsevier, vol. 175(C).
    5. Konno, Akio & Kato, Hironori & Takeuchi, Wataru & Kiguchi, Riku, 2021. "Global evidence on productivity effects of road infrastructure incorporating spatial spillover effects," Transport Policy, Elsevier, vol. 103(C), pages 167-182.
    6. Cui, Lixin & Dong, Ruxue & Mu, Yunguo & Shen, Zhiyang & Xu, Jiatong, 2022. "How policy preferences affect the carbon shadow price in the OECD," Applied Energy, Elsevier, vol. 311(C).
    7. Kejia Yang & Yalin Lei, 2017. "The carbon dioxide marginal abatement cost calculation of Chinese provinces based on stochastic frontier analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 505-521, January.
    8. Rangel González Erick & Llamosas-Rosas Irving, 2021. "Observing the Evolution of the Informal Sector from Space: A Municipal Approach 2013-2020," Working Papers 2021-18, Banco de México.
    9. Zhang, Ning & Huang, Xuhui & Qi, Chao, 2022. "The effect of environmental regulation on the marginal abatement cost of industrial firms: Evidence from the 11th Five-Year Plan in China," Energy Economics, Elsevier, vol. 112(C).
    10. Erik Hille & Patrick Möbius, 2019. "Environmental Policy, Innovation, and Productivity Growth: Controlling the Effects of Regulation and Endogeneity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1315-1355, August.
    11. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    12. Felbermayr, Gabriel & Gröschl, Jasmin & Sanders, Mark & Schippers, Vincent & Steinwachs, Thomas, 2018. "Shedding Light on the Spatial Diffusion of Disasters," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181556, Verein für Socialpolitik / German Economic Association.
    13. Phoebe W. Ishak & Pierre-Guillaume Méon, 2020. "A resource-rich neighbor is a misfortune: The spatial distribution of the resource curse in Brazil," Working Papers CEB 20-001, ULB -- Universite Libre de Bruxelles.
    14. Qian Chen & Tingting Ye & Naizhuo Zhao & Mingjun Ding & Zutao Ouyang & Peng Jia & Wenze Yue & Xuchao Yang, 2021. "Mapping China’s regional economic activity by integrating points-of-interest and remote sensing data with random forest," Environment and Planning B, , vol. 48(7), pages 1876-1894, September.
    15. Matthieu Charpe, 2023. "Convergence heterogeneity at the local level in sub‐Saharan Africa," Papers in Regional Science, Wiley Blackwell, vol. 102(2), pages 273-305, April.
    16. Hille, Erik & Shahbaz, Muhammad & Moosa, Imad, 2019. "The impact of FDI on regional air pollution in the Republic of Korea: A way ahead to achieve the green growth strategy?," Energy Economics, Elsevier, vol. 81(C), pages 308-326.
    17. Wang, Jian & Lv, Kangjuan & Bian, Yiwen & Cheng, Yu, 2017. "Energy efficiency and marginal carbon dioxide emission abatement cost in urban China," Energy Policy, Elsevier, vol. 105(C), pages 246-255.
    18. Addison,Douglas M. & Stewart,Benjamin P., 2015. "Nighttime lights revisited : the use of nighttime lights data as a proxy for economic variables," Policy Research Working Paper Series 7496, The World Bank.
    19. Kammerlander, Andreas & Schulze, Günther G., 2023. "Local economic growth and infant mortality," Journal of Health Economics, Elsevier, vol. 87(C).
    20. Corral, Leonardo & Schling, Maja & Rogers, Cassandra & Cumberbatch, Janice & Hinds, Fabian & Zhou, Naijun & Lemay, Michele H., 2016. "The Impact of Coastal Infrastructure Improvements on Economic Growth: Evidence from Barbados," IDB Publications (Working Papers) 7860, Inter-American Development Bank.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:9:y:2022:i:1:d:10.1057_s41599-022-01171-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.