IDEAS home Printed from https://ideas.repec.org/a/pal/marecl/v25y2023i1d10.1057_s41278-023-00255-z.html
   My bibliography  Save this article

Emerging practices and research issues for big data analytics in freight transportation

Author

Listed:
  • Michael F. Gorman

    (University of Dayton School of Business)

  • John-Paul Clarke

    (The University of Texas at Austin)

  • René Koster

    (Erasmus University Rotterdam)

  • Michael Hewitt

    (Quinlan School of Business at Loyola University Chicago)

  • Debjit Roy

    (Indian Institute of Management Ahmedabad)

  • Mei Zhang

    (Otis Elevator Company)

Abstract

Freight transportation has been experiencing a renaissance in data sources, storage, and dissemination of data to decision makers in the last decades, resulting in new approaches to business and new research streams in analytics to support them. We provide an overview of developments in both practice and research related to big data analytics (BDA) in each of the major areas of freight transportation: air, ocean, rail, and truck. In each case, we first describe new capabilities in practice, and avenues of research given these evolving capabilities. New data sources, volumes and timeliness directly affect the way the industry operates, and how future researchers in these fields will structure their work. We discuss the evolving research agenda due to BDA and formulate fundamental research questions for each mode of freight transport.

Suggested Citation

  • Michael F. Gorman & John-Paul Clarke & René Koster & Michael Hewitt & Debjit Roy & Mei Zhang, 2023. "Emerging practices and research issues for big data analytics in freight transportation," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(1), pages 28-60, March.
  • Handle: RePEc:pal:marecl:v:25:y:2023:i:1:d:10.1057_s41278-023-00255-z
    DOI: 10.1057/s41278-023-00255-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41278-023-00255-z
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41278-023-00255-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lindsey, Christopher & Mahmassani, Hani S., 2017. "Sourcing truckload capacity in the transportation spot market: A framework for third party providers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 261-273.
    2. Ziaul Haque Munim & Hercules Haralambides, 2022. "Advances in maritime autonomous surface ships (MASS) in merchant shipping," Post-Print hal-04046263, HAL.
    3. Zhang, Bo & Yao, Tao & Friesz, Terry L. & Sun, Yuqi, 2015. "A tractable two-stage robust winner determination model for truckload service procurement via combinatorial auctions," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 16-31.
    4. Ziaul Haque Munim & Hercules Haralambides, 2022. "Advances in maritime autonomous surface ships (MASS) in merchant shipping," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(2), pages 181-188, June.
    5. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    6. Amir Hossein Gharehgozli & Debjit Roy & René de Koster, 2016. "Sea container terminals: New technologies and OR models," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 18(2), pages 103-140, June.
    7. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    8. Hugo P. Simão & Abraham George & Warren B. Powell & Ted Gifford & John Nienow & Jeff Day, 2010. "Approximate Dynamic Programming Captures Fleet Operations for Schneider National," Interfaces, INFORMS, vol. 40(5), pages 342-352, October.
    9. Tsai, Mei-Ting & Saphores, Jean-Daniel & Regan, Amelia, 2011. "Valuation of freight transportation contracts under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 920-932.
    10. Fosso Wamba, Samuel & Akter, Shahriar & Edwards, Andrew & Chopin, Geoffrey & Gnanzou, Denis, 2015. "How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study," International Journal of Production Economics, Elsevier, vol. 165(C), pages 234-246.
    11. Gavin Yeo & Shiau Hong Lim & Laura Wynter & Hifaz Hassan, 2019. "MPA-IBM Project SAFER: Sense-Making Analytics for Maritime Event Recognition," Interfaces, INFORMS, vol. 49(4), pages 269-280, July.
    12. Mulder, Judith & Dekker, Rommert, 2014. "Methods for strategic liner shipping network design," European Journal of Operational Research, Elsevier, vol. 235(2), pages 367-377.
    13. Andrew Lim & Brian Rodrigues & Zhou Xu, 2008. "Transportation Procurement with Seasonally Varying Shipper Demand and Volume Guarantees," Operations Research, INFORMS, vol. 56(3), pages 758-771, June.
    14. Na Li & Hercules Haralambides & Haotian Sheng & Zhihong Jin, 2022. "A new vocation queuing model to optimize truck appointments and yard handling-equipment use in dual transactions systems of container terminals," Post-Print hal-04046268, HAL.
    15. Gregory A. Godfrey & Warren B. Powell, 2002. "An Adaptive Dynamic Programming Algorithm for Dynamic Fleet Management, I: Single Period Travel Times," Transportation Science, INFORMS, vol. 36(1), pages 21-39, February.
    16. Berit D. Brouer & J. Fernando Alvarez & Christian E. M. Plum & David Pisinger & Mikkel M. Sigurd, 2014. "A Base Integer Programming Model and Benchmark Suite for Liner-Shipping Network Design," Transportation Science, INFORMS, vol. 48(2), pages 281-312, May.
    17. Beatriz Acero & Maria Jesus Saenz & Davide Luzzini, 2022. "Introducing synchromodality: One missing link between transportation and supply chain management," Journal of Supply Chain Management, Institute for Supply Management, vol. 58(1), pages 51-64, January.
    18. Na Li & Hercules Haralambides & Haotian Sheng & Zhihong Jin, 2022. "A new vocation queuing model to optimize truck appointments and yard handling-equipment use in dual transactions systems of container terminals," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04046268, HAL.
    19. Soumia Ichoua & Michel Gendreau & Jean-Yves Potvin, 2006. "Exploiting Knowledge About Future Demands for Real-Time Vehicle Dispatching," Transportation Science, INFORMS, vol. 40(2), pages 211-225, May.
    20. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    21. Zhang, Liye & Meng, Qiang & Fang Fwa, Tien, 2019. "Big AIS data based spatial-temporal analyses of ship traffic in Singapore port waters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 287-304.
    22. Yishu Zheng & Wayne K. Talley & Di Jin & ManWo Ng, 2016. "Crew injuries in container vessel accidents," Maritime Policy & Management, Taylor & Francis Journals, vol. 43(5), pages 541-551, July.
    23. Nandiraju, Srinivas & Regan, Amelia, 2008. "Freight Transportation Electronic Marketplaces: A Survey of the Industry and Exploration of Important Research Issues," University of California Transportation Center, Working Papers qt9fj2c4jw, University of California Transportation Center.
    24. Gregory A. Godfrey & Warren B. Powell, 2002. "An Adaptive Dynamic Programming Algorithm for Dynamic Fleet Management, II: Multiperiod Travel Times," Transportation Science, INFORMS, vol. 36(1), pages 40-54, February.
    25. Yadong Wang & Qiang Meng, 2019. "Integrated method for forecasting container slot booking in intercontinental liner shipping service," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 653-674, September.
    26. Ziaul Haque Munim & Hercules Haralambides, 2022. "Advances in maritime autonomous surface ships (MASS) in merchant shipping," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04046263, HAL.
    27. Budak, Aysenur & Ustundag, Alp & Guloglu, Bulent, 2017. "A forecasting approach for truckload spot market pricing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 55-68.
    28. Judith Mulder & Willem van Jaarsveld & Rommert Dekker, 2019. "Simultaneous Optimization of Speed and Buffer Times with an Application to Liner Shipping," Transportation Science, INFORMS, vol. 53(2), pages 365-382, March.
    29. Marlin W. Ulmer & Justin C. Goodson & Dirk C. Mattfeld & Marco Hennig, 2019. "Offline–Online Approximate Dynamic Programming for Dynamic Vehicle Routing with Stochastic Requests," Service Science, INFORMS, vol. 53(1), pages 185-202, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongping Song, 2021. "A Literature Review, Container Shipping Supply Chain: Planning Problems and Research Opportunities," Logistics, MDPI, vol. 5(2), pages 1-26, June.
    2. Zhen, Lu & Shen, Tao & Wang, Shuaian & Yu, Shucheng, 2016. "Models on ship scheduling in transshipment hubs with considering bunker cost," International Journal of Production Economics, Elsevier, vol. 173(C), pages 111-121.
    3. Zolfagharinia, Hossein & Haughton, Michael, 2018. "The importance of considering non-linear layover and delay costs for local truckers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 331-355.
    4. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    5. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    6. Kastner, Marvin & Kämmerling, Nicolas & Jahn, Carlos & Clausen, Uwe, 2020. "Equipment selection and layout planning - Literature overview and research directions," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability. Proceedings of the Hamburg International Conferen, volume 30, pages 485-519, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    7. Jia, Shuai & Li, Chung-Lun & Xu, Zhou, 2020. "A simulation optimization method for deep-sea vessel berth planning and feeder arrival scheduling at a container port," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 174-196.
    8. Rodrigues, Filipe & Agra, Agostinho, 2022. "Berth allocation and quay crane assignment/scheduling problem under uncertainty: A survey," European Journal of Operational Research, Elsevier, vol. 303(2), pages 501-524.
    9. Hercules Haralambides, 2023. "The state-of-play in maritime economics and logistics research (2017–2023)," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(3), pages 429-451, September.
    10. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    11. Zolfagharinia, Hossein & Haughton, Michael A., 2017. "Operational flexibility in the truckload trucking industry," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 437-460.
    12. Gang Du & Chuanwang Sun & Jinxian Weng, 2016. "Liner Shipping Fleet Deployment with Sustainable Collaborative Transportation," Sustainability, MDPI, vol. 8(2), pages 1-15, February.
    13. Liu, Baoli & Li, Zhi-Chun & Wang, Yadong, 2022. "A two-stage stochastic programming model for seaport berth and channel planning with uncertainties in ship arrival and handling times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    14. Kang, Liujiang & Meng, Qiang & Tan, Kok Choon, 2020. "Tugboat scheduling under ship arrival and tugging process time uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    15. Shuai Jia & Chung-Lun Li & Zhou Xu, 2019. "Managing Navigation Channel Traffic and Anchorage Area Utilization of a Container Port," Transportation Science, INFORMS, vol. 53(3), pages 728-745, May.
    16. Lafkihi, Mariam & Pan, Shenle & Ballot, Eric, 2019. "Freight transportation service procurement: A literature review and future research opportunities in omnichannel E-commerce," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 348-365.
    17. Wang, Tingsong & Meng, Qiang & Wang, Shuaian & Qu, Xiaobo, 2021. "A two-stage stochastic nonlinear integer-programming model for slot allocation of a liner container shipping service," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 143-160.
    18. Warren B. Powell, 2016. "Perspectives of approximate dynamic programming," Annals of Operations Research, Springer, vol. 241(1), pages 319-356, June.
    19. Liu, Baoli & Li, Zhi-Chun & Sheng, Dian & Wang, Yadong, 2021. "Integrated planning of berth allocation and vessel sequencing in a seaport with one-way navigation channel," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 23-47.
    20. Enna Hirata & Annette Skovsted Hansen, 2024. "Identifying Key Issues in Integration of Autonomous Ships in Container Ports: A Machine-Learning-Based Systematic Literature Review," Logistics, MDPI, vol. 8(1), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:marecl:v:25:y:2023:i:1:d:10.1057_s41278-023-00255-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.