IDEAS home Printed from https://ideas.repec.org/h/zbw/hiclch/228960.html
   My bibliography  Save this book chapter

Equipment selection and layout planning - Literature overview and research directions

In: Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 30

Author

Listed:
  • Kastner, Marvin
  • Kämmerling, Nicolas
  • Jahn, Carlos
  • Clausen, Uwe

Abstract

Purpose: When container terminals are planned or converted, among others the most suitable container handling system needs to be selected and the appropriate terminal layout needs to be designed. These two planning activities are mutually dependent and affect the costs and future operational performance. This leads to the question of how to arrive at a (near-)optimal solution for given criteria. Methodology: A mapping review is conducted to investigate how the container handling system is selected and how the terminal layout is designed. Literature is examined regarding the employed methodology, the performance indicator(s) to optimize, and the way terminal layout and equipment selection have been jointly considered. Findings: Various methods have been used to assess a suitable container handling system and the appropriate layout. Commonly, mathematical optimization is used to arrive at a suggestion and simulation is the tool to evaluate proposed decisions. Aspects such as handling costs, travel distances, or ecological factors are sought to be optimized. Originality: Several literature reviews in the past years investigated approaches to the plethora of scheduling problems at container terminals. Here, the two strategic planning activities equipment selection and layout planning are presented in detail. This publication focuses on how the dependency of the two activities has been han-dled in literature.

Suggested Citation

  • Kastner, Marvin & Kämmerling, Nicolas & Jahn, Carlos & Clausen, Uwe, 2020. "Equipment selection and layout planning - Literature overview and research directions," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability. Proceedings of the Hamburg International Conferen, volume 30, pages 485-519, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
  • Handle: RePEc:zbw:hiclch:228960
    DOI: 10.15480/882.3147
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/228960/1/hicl-2020-30-485.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.15480/882.3147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Panagiotis Angeloudis & Michael G. H. Bell, 2011. "A review of container terminal simulation models," Maritime Policy & Management, Taylor & Francis Journals, vol. 38(5), pages 523-540, February.
    2. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Storage yard operations in container terminals: Literature overview, trends, and research directions," European Journal of Operational Research, Elsevier, vol. 235(2), pages 412-430.
    3. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    4. Amir Hossein Gharehgozli & Debjit Roy & René de Koster, 2016. "Sea container terminals: New technologies and OR models," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 18(2), pages 103-140, June.
    5. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Transport operations in container terminals: Literature overview, trends, research directions and classification scheme," European Journal of Operational Research, Elsevier, vol. 236(1), pages 1-13.
    6. Ping Wang & Joan P. Mileski & Qingcheng Zeng, 2019. "Alignments between strategic content and process structure: the case of container terminal service process automation," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(4), pages 543-558, December.
    7. Branislav Dragović & Ernestos Tzannatos & Nam Kuy Park, 2017. "Simulation modelling in ports and container terminals: literature overview and analysis by research field, application area and tool," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 4-34, March.
    8. Uwe Clausen & Jan Kaffka, 2016. "Development of priority rules for handlings in inland port container terminals with simulation," Journal of Simulation, Taylor & Francis Journals, vol. 10(2), pages 95-102, May.
    9. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    10. Vis, Iris F.A., 2006. "A comparative analysis of storage and retrieval equipment at a container terminal," International Journal of Production Economics, Elsevier, vol. 103(2), pages 680-693, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
    2. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    3. Rodrigues, Filipe & Agra, Agostinho, 2022. "Berth allocation and quay crane assignment/scheduling problem under uncertainty: A survey," European Journal of Operational Research, Elsevier, vol. 303(2), pages 501-524.
    4. Gharehgozli, Amir & Yu, Yugang & de Koster, René & Du, Shaofu, 2019. "Sequencing storage and retrieval requests in a container block with multiple open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 261-284.
    5. Gharehgozli, Amir Hossein & Vernooij, Floris Gerardus & Zaerpour, Nima, 2017. "A simulation study of the performance of twin automated stacking cranes at a seaport container terminal," European Journal of Operational Research, Elsevier, vol. 261(1), pages 108-128.
    6. Kastner, Marvin & Pache, Hannah & Jahn, Carlos, 2019. "Simulation-based optimization at container terminals: A literature review," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Digital Transformation in Maritime and City Logistics: Smart Solutions for Logistics. Proceedings of the Hamburg International Conference of Logistics, volume 28, pages 112-135, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    7. Lashkari, Shabnam & Wu, Yong & Petering, Matthew E.H., 2017. "Sequencing dual-spreader crane operations: Mathematical formulation and heuristic algorithm," European Journal of Operational Research, Elsevier, vol. 262(2), pages 521-534.
    8. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    9. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    10. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    11. Kress, Dominik & Dornseifer, Jan & Jaehn, Florian, 2019. "An exact solution approach for scheduling cooperative gantry cranes," European Journal of Operational Research, Elsevier, vol. 273(1), pages 82-101.
    12. Dirk Briskorn, 2021. "Routing two stacking cranes with predetermined container sequences," Journal of Scheduling, Springer, vol. 24(4), pages 367-380, August.
    13. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    14. Qin, Tianbao & Du, Yuquan & Chen, Jiang Hang & Sha, Mei, 2020. "Combining mixed integer programming and constraint programming to solve the integrated scheduling problem of container handling operations of a single vessel," European Journal of Operational Research, Elsevier, vol. 285(3), pages 884-901.
    15. Schepler, Xavier & Balev, Stefan & Michel, Sophie & Sanlaville, Éric, 2017. "Global planning in a multi-terminal and multi-modal maritime container port," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 38-62.
    16. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    17. Kress, Dominik & Meiswinkel, Sebastian & Pesch, Erwin, 2019. "Straddle carrier routing at seaport container terminals in the presence of short term quay crane buffer areas," European Journal of Operational Research, Elsevier, vol. 279(3), pages 732-750.
    18. Liu, Baoli & Li, Zhi-Chun & Sheng, Dian & Wang, Yadong, 2021. "Integrated planning of berth allocation and vessel sequencing in a seaport with one-way navigation channel," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 23-47.
    19. Dirk Briskorn & Lennart Zey, 2018. "Resolving interferences of triple‐crossover‐cranes by determining paths in networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(6-7), pages 477-498, September.
    20. Lennart Zey & Dirk Briskorn & Nils Boysen, 2022. "Twin-crane scheduling during seaside workload peaks with a dedicated handshake area," Journal of Scheduling, Springer, vol. 25(1), pages 3-34, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:hiclch:228960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://hicl.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.