IDEAS home Printed from https://ideas.repec.org/a/pab/rmcpee/v32y2021i1p83-98.html
   My bibliography  Save this article

Modelización de la demanda de energía eléctrica: más allá de la normalidad || Electrical energy demand modeling: beyond normality

Author

Listed:
  • Rendón, Juan F.

    (Institución Universitaria ITM (Colombia))

  • Trespalacios, Alfredo

    (Institución Universitaria ITM (Colombia))

  • Cortés, Lina M.

    (Universidad EAFIT (Colombia))

  • Villada-Medina, Hernán D.

    (Institución Universitaria ITM (Colombia))

Abstract

Este trabajo propone un modelo de demanda de energía eléctrica basado en métodos de series de tiempo y estadística semi-noparamétrica (SNP). Esto permite conocer no solo el valor esperado de la demanda sino también su distribución de probabilidad de manera que, mediante el cálculo de métricas como la Medida de Riesgo de Cuantil (Quantile Risk Metrics), se puedan tomar decisiones basadas en valores extremos menos o más favorables que el valor esperado. Los resultados muestran que para el caso de la demanda de energía eléctrica del mercado colombiano entre los años 2000 y 2018 la distribución de probabilidad de la demanda diaria promedio es leptocúrtica. Es decir, los eventos extremos ocurren con mayor frecuencia que aquellos que suponen una distribución normal. De modo que, el supuesto de distribución gaussiana conlleva a la subvaloración del riesgo en términos de la subvaloración de la frecuencia de valores extremos. || This work proposes a model of electrical energy demand based on time series methods and semi-nonparametric statistics (SNP). This allows knowing not only the expected value of the demand but also its probability distribution so that, by calculating metrics such as the Quantile Risk Metrics, decisions can be made based on less or more extreme values favorable than the expected value. The results show that in the case of electricity demand in the Colombian market between 2000 and 2018, the probability distribution of the average daily demand is leptokurtic. That is, extreme events occur more frequently than those assumed by a normal distribution. Thus, the Gaussian distribution assumption leads to undervaluation of risk in terms of undervaluation of the frequency of extreme values.

Suggested Citation

  • Rendón, Juan F. & Trespalacios, Alfredo & Cortés, Lina M. & Villada-Medina, Hernán D., 2021. "Modelización de la demanda de energía eléctrica: más allá de la normalidad || Electrical energy demand modeling: beyond normality," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 32(1), pages 83-98, December.
  • Handle: RePEc:pab:rmcpee:v:32:y:2021:i:1:p:83-98
    DOI: https://doi.org/10.46661/revmetodoscuanteconempresa.3856
    as

    Download full text from publisher

    File URL: https://www.upo.es/revistas/index.php/RevMetCuant/article/view/3856/5256
    Download Restriction: no

    File URL: https://www.upo.es/revistas/index.php/RevMetCuant/article/view/3856
    Download Restriction: no

    File URL: https://libkey.io/https://doi.org/10.46661/revmetodoscuanteconempresa.3856?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    2. León, à ngel & Mencía, Javier & Sentana, Enrique, 2009. "Parametric Properties of Semi-Nonparametric Distributions, with Applications to Option Valuation," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 176-192.
    3. Trespalacios, Alfredo & Cortés, Lina M. & Perote, Javier, 2020. "Uncertainty in electricity markets from a semi-nonparametric approach," Energy Policy, Elsevier, vol. 137(C).
    4. Engle, R. F. & Granger, C. W. J. & Hallman, J. J., 1989. "Merging short-and long-run forecasts : An application of seasonal cointegration to monthly electricity sales forecasting," Journal of Econometrics, Elsevier, vol. 40(1), pages 45-62, January.
    5. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    6. Lester C. Hunt & Robert Witt, 1995. "An Analysis of UK Energy Demand Using Multivariate Cointegration," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 86, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.
    7. Bentzen, Jan & Engsted, Tom, 1993. "Short- and long-run elasticities in energy demand : A cointegration approach," Energy Economics, Elsevier, vol. 15(1), pages 9-16, January.
    8. Ediger, Volkan S. & Akar, Sertac, 2007. "ARIMA forecasting of primary energy demand by fuel in Turkey," Energy Policy, Elsevier, vol. 35(3), pages 1701-1708, March.
    9. Bentzen, Jan & Engsted, Tom, 2001. "A revival of the autoregressive distributed lag model in estimating energy demand relationships," Energy, Elsevier, vol. 26(1), pages 45-55.
    10. Hussain, Anwar & Rahman, Muhammad & Memon, Junaid Alam, 2016. "Forecasting electricity consumption in Pakistan: the way forward," Energy Policy, Elsevier, vol. 90(C), pages 73-80.
    11. Cortés, Lina M. & Mora-Valencia, Andrés & Perote, Javier, 2020. "Retrieving the implicit risk neutral density of WTI options with a semi-nonparametric approach," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    12. Nasr, G. E. & Badr, E. A. & Dibeh, G., 2000. "Econometric modeling of electricity consumption in post-war Lebanon," Energy Economics, Elsevier, vol. 22(6), pages 627-640, December.
    13. Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng, 2016. "Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1,1) model," Energy, Elsevier, vol. 100(C), pages 384-390.
    14. Ignacio Mauleon & Javier Perote, 2000. "Testing densities with financial data: an empirical comparison of the Edgeworth-Sargan density to the Student's t," The European Journal of Finance, Taylor & Francis Journals, vol. 6(2), pages 225-239.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdogdu, Erkan, 2007. "Electricity demand analysis using cointegration and ARIMA modelling: A case study of Turkey," Energy Policy, Elsevier, vol. 35(2), pages 1129-1146, February.
    2. Jamil, Rehan, 2020. "Hydroelectricity consumption forecast for Pakistan using ARIMA modeling and supply-demand analysis for the year 2030," Renewable Energy, Elsevier, vol. 154(C), pages 1-10.
    3. Jiménez, Inés & Mora-Valencia, Andrés & Perote, Javier, 2022. "Semi-nonparametric risk assessment with cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 59(C).
    4. Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1-23, November.
    5. Jiménez, Inés & Mora-Valencia, Andrés & Perote, Javier, 2023. "Multivariate dynamics between emerging markets and digital asset markets: An application of the SNP-DCC model," Emerging Markets Review, Elsevier, vol. 56(C).
    6. Wenting Zhao & Juanjuan Zhao & Xilong Yao & Zhixin Jin & Pan Wang, 2019. "A Novel Adaptive Intelligent Ensemble Model for Forecasting Primary Energy Demand," Energies, MDPI, vol. 12(7), pages 1-28, April.
    7. Inés Jiménez & Andrés Mora-Valencia & Javier Perote, 2022. "Dynamic selection of Gram–Charlier expansions with risk targets: an application to cryptocurrencies," Risk Management, Palgrave Macmillan, vol. 24(1), pages 81-99, March.
    8. Sylvia Mardiana & Ferdinand Saragih & Martani Huseini, 2020. "Forecasting Gasoline Demand in Indonesia Using Time Series," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 132-145.
    9. Zhang, Yi & Ji, Qiang & Fan, Ying, 2018. "The price and income elasticity of China's natural gas demand: A multi-sectoral perspective," Energy Policy, Elsevier, vol. 113(C), pages 332-341.
    10. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    11. Ñíguez, Trino-Manuel & Perote, Javier, 2017. "Moments expansion densities for quantifying financial risk," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 53-69.
    12. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    13. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    14. Xiwen Cui & Xinyu Guan & Dongyu Wang & Dongxiao Niu & Xiaomin Xu, 2022. "Can China Meet Its 2030 Total Energy Consumption Target? Based on an RF-SSA-SVR-KDE Model," Energies, MDPI, vol. 15(16), pages 1-13, August.
    15. Suat Ozturk & Feride Ozturk, 2018. "Forecasting Energy Consumption of Turkey by Arima Model," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 8(2), pages 52-60, February.
    16. Del Brio, Esther B. & Perote, Javier, 2012. "Gram–Charlier densities: Maximum likelihood versus the method of moments," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 531-537.
    17. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Electricity demand and conservation potential in the Chinese nonmetallic mineral products industry," Energy Policy, Elsevier, vol. 68(C), pages 243-253.
    18. Chang, Yoosoon & Martinez-Chombo, Eduardo, 2003. "Electricity Demand Analysis Using Cointegration and Error-Correction Models with Time Varying Parameters: The Mexican Case," Working Papers 2003-08, Rice University, Department of Economics.
    19. Luzia, Ruan & Rubio, Lihki & Velasquez, Carlos E., 2023. "Sensitivity analysis for forecasting Brazilian electricity demand using artificial neural networks and hybrid models based on Autoregressive Integrated Moving Average," Energy, Elsevier, vol. 274(C).
    20. Cortés, Lina M. & Mora-Valencia, Andrés & Perote, Javier, 2017. "Measuring firm size distribution with semi-nonparametric densities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 485(C), pages 35-47.

    More about this item

    Keywords

    demanda de energía; modelización semi-noparamétrica; mercado de energía; medida de riesgo de cuantil; energy demand; semi-nonparametric modelling; energy market; quantile risk metrics;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:32:y:2021:i:1:p:83-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publicación Digital - UPO (email available below). General contact details of provider: https://edirc.repec.org/data/dmupoes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.