IDEAS home Printed from https://ideas.repec.org/a/kap/apfinm/v20y2013i3p243-259.html
   My bibliography  Save this article

An Empirical Comparison of Two Stochastic Volatility Models using Indian Market Data

Author

Listed:
  • Srikanth Iyer
  • Seema Nanda
  • Swapnil Kumar

Abstract

We conduct an empirical comparison of hedging strategies for two different stochastic volatility models proposed in the literature. One is an asymptotic expansion approach and the other is the risk-minimizing approach applied to a Markov-switched geometric Brownian motion. We also compare these with the Black–Scholes delta hedging strategies using historical and implied volatilities. The derivatives we consider are European call options on the NIFTY index of the Indian National Stock Exchange. We compare a few cases with profit and loss data from a trading desk. We find that for the cases that we analyzed, by far the better results are obtained for the Markov-switched geometric Brownian motion. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Srikanth Iyer & Seema Nanda & Swapnil Kumar, 2013. "An Empirical Comparison of Two Stochastic Volatility Models using Indian Market Data," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 20(3), pages 243-259, September.
  • Handle: RePEc:kap:apfinm:v:20:y:2013:i:3:p:243-259
    DOI: 10.1007/s10690-013-9166-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10690-013-9166-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10690-013-9166-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rama Cont & Yu Hang Kan, 2011. "Dynamic hedging of portfolio credit derivatives," Post-Print hal-00578008, HAL.
    2. Rolf Poulsen & Klaus Reiner Schenk-Hoppe & Christian-Oliver Ewald, 2009. "Risk minimization in stochastic volatility models: model risk and empirical performance," Quantitative Finance, Taylor & Francis Journals, vol. 9(6), pages 693-704.
    3. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Szymon Borak & Kai Detlefsen & Wolfgang Härdle, 2005. "FFT Based Option Pricing," SFB 649 Discussion Papers SFB649DP2005-011, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    6. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    7. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    2. Chiang, Min-Hsien & Huang, Hsin-Yi, 2011. "Stock market momentum, business conditions, and GARCH option pricing models," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 488-505, June.
    3. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    4. Siddiqi, Hammad, 2015. "Anchoring Heuristic in Option Pricing," MPRA Paper 63218, University Library of Munich, Germany.
    5. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    6. Cheng Few Lee & Yibing Chen & John Lee, 2020. "Alternative Methods to Derive Option Pricing Models: Review and Comparison," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 102, pages 3573-3617, World Scientific Publishing Co. Pte. Ltd..
    7. Chateau, J. -P. & Dufresne, D., 2002. "The stochastic-volatility American put option of banks' credit line commitments:: Valuation and policy implications," International Review of Financial Analysis, Elsevier, vol. 11(2), pages 159-181.
    8. Darsinos, T. & Satchell, S.E., 2001. "Bayesian Forecasting of Options Prices: A Natural Framework for Pooling Historical and Implied Volatiltiy Information," Cambridge Working Papers in Economics 0116, Faculty of Economics, University of Cambridge.
    9. Gang Li & Chu Zhang, 2010. "On the Number of State Variables in Options Pricing," Management Science, INFORMS, vol. 56(11), pages 2058-2075, November.
    10. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    11. Rombouts, Jeroen V.K. & Stentoft, Lars, 2015. "Option pricing with asymmetric heteroskedastic normal mixture models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 635-650.
    12. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    13. Siddiqi, Hammad, 2015. "Anchoring Heuristic in Option Pricing," Risk and Sustainable Management Group Working Papers 207677, University of Queensland, School of Economics.
    14. Chen, An-Sing & Leung, Mark T., 2005. "Modeling time series information into option prices: An empirical evaluation of statistical projection and GARCH option pricing model," Journal of Banking & Finance, Elsevier, vol. 29(12), pages 2947-2969, December.
    15. Hilliard, Jitka, 2013. "Testing Greeks and price changes in the S&P 500 options and futures contract: A regression analysis," International Review of Financial Analysis, Elsevier, vol. 26(C), pages 51-58.
    16. repec:dau:papers:123456789/2138 is not listed on IDEAS
    17. Duan, Jin-Chuan & Zhang, Hua, 2001. "Pricing Hang Seng Index options around the Asian financial crisis - A GARCH approach," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 1989-2014, November.
    18. Kim, In Joon & Kim, Sol, 2004. "Empirical comparison of alternative stochastic volatility option pricing models: Evidence from Korean KOSPI 200 index options market," Pacific-Basin Finance Journal, Elsevier, vol. 12(2), pages 117-142, April.
    19. Siddiqi, Hammad, 2014. "Anchoring Heuristic in Option Prices," MPRA Paper 66018, University Library of Munich, Germany, revised 15 Jul 2015.
    20. Siddiqi, Hammad, 2014. "Analogy Making and the Structure of Implied Volatility Skew," MPRA Paper 60921, University Library of Munich, Germany.
    21. Sol Kim & In Jung Song, 2021. "The traders' rule and long‐term options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(3), pages 406-436, March.

    More about this item

    Keywords

    Option pricing; Stochastic volatility; Mean reverting; Regime switching; Risk minimizing; C02; C90; G13;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C90 - Mathematical and Quantitative Methods - - Design of Experiments - - - General
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:apfinm:v:20:y:2013:i:3:p:243-259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.