IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v55y2007i1p24-36.html
   My bibliography  Save this article

Determining the Acceptance of Cadaveric Livers Using an Implicit Model of the Waiting List

Author

Listed:
  • Oguzhan Alagoz

    (Department of Industrial and Systems Engineering, University of Wisconsin--Madison, Madison, Wisconsin 53706)

  • Lisa M. Maillart

    (Weatherhead School of Management, Case Western Reserve University, Cleveland, Ohio 44106)

  • Andrew J. Schaefer

    (Departments of Industrial Engineering and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261)

  • Mark S. Roberts

    (Section of Decision Sciences and Clinical Systems Modeling, Division of General Internal Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213)

Abstract

The only available therapy for patients with end-stage liver disease is organ transplantation. In the United States, patients with end-stage liver disease are placed on a waiting list and offered livers based on location and waiting time, as well as current and past health. Although there is a shortage of cadaveric livers, 45% of all cadaveric liver offers are declined by the first transplant surgeon and/or patient to whom they are offered. We consider the decision problem faced by these patients: Should an offered organ of a given quality be accepted or declined? We formulate a Markov decision process model in which the state of the process is described by patient state and organ quality. We use a detailed model of patient health to estimate the parameters of our decision model and implicitly consider the effects of the waiting list through our patient-state-dependent definition of the organ arrival probabilities. We derive structural properties of the model, including a set of intuitive conditions that ensure the existence of control-limit optimal policies. We use clinical data in our computational experiments, which confirm that the optimal policy is typically of control-limit type.

Suggested Citation

  • Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2007. "Determining the Acceptance of Cadaveric Livers Using an Implicit Model of the Waiting List," Operations Research, INFORMS, vol. 55(1), pages 24-36, February.
  • Handle: RePEc:inm:oropre:v:55:y:2007:i:1:p:24-36
    DOI: 10.1287/opre.1060.0329
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1060.0329
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1060.0329?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Michael Harrison & Michael I. Taksar, 1983. "Instantaneous Control of Brownian Motion," Mathematics of Operations Research, INFORMS, vol. 8(3), pages 439-453, August.
    2. Howard J. Weiss, 1979. "The Computation of Optimal Control Limits for a Queue with Batch Services," Management Science, INFORMS, vol. 25(4), pages 320-328, April.
    3. Oguzhan Alagoz & Cindy L. Bryce & Steven Shechter & Andrew Schaefer & Chung-Chou H. Chang & Derek C. Angus & Mark S. Roberts, 2005. "Incorporating Biological Natural History in Simulation Models: Empirical Estimates of the Progression of End-Stage Liver Disease," Medical Decision Making, , vol. 25(6), pages 620-632, November.
    4. Chew, Soo Hong & Ho, Joanna L, 1994. "Hope: An Empirical Study of Attitude toward the Timing of Uncertainty Resolution," Journal of Risk and Uncertainty, Springer, vol. 8(3), pages 267-288, May.
    5. Ciriaco Valdez‐Flores & Richard M. Feldman, 1989. "A survey of preventive maintenance models for stochastically deteriorating single‐unit systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(4), pages 419-446, August.
    6. Israel David & Uri Yechiali, 1995. "One-Attribute Sequential Assignment Match Processes in Discrete Time," Operations Research, INFORMS, vol. 43(5), pages 879-884, October.
    7. Stefanos A. Zenios & Glenn M. Chertow & Lawrence M. Wein, 2000. "Dynamic Allocation of Kidneys to Candidates on the Transplant Waiting List," Operations Research, INFORMS, vol. 48(4), pages 549-569, August.
    8. Jae-Hyeon Ahn & John C. Hornberger, 1996. "Involving Patients in the Cadaveric Kidney Transplant Allocation Process: A Decision-Theoretic Perspective," Management Science, INFORMS, vol. 42(5), pages 629-641, May.
    9. Rhonda Righter, 1989. "A Resource Allocation Problem in a Random Environment," Operations Research, INFORMS, vol. 37(2), pages 329-338, April.
    10. Cyrus Derman, 1962. "On Sequential Decisions and Markov Chains," Management Science, INFORMS, vol. 9(1), pages 16-24, October.
    11. Cyrus Derman, 1963. "Optimal Replacement and Maintenance Under Markovian Deterioration with Probability Bounds on Failure," Management Science, INFORMS, vol. 9(3), pages 478-481, April.
    12. Chen, Mingchih & Feldman, Richard M., 1997. "Optimal replacement policies with minimal repair and age-dependent costs," European Journal of Operational Research, Elsevier, vol. 98(1), pages 75-84, April.
    13. Kyriakidis, E. G., 2004. "Optimal control of a simple immigration-emigration process through total catastrophes," European Journal of Operational Research, Elsevier, vol. 155(1), pages 198-208, May.
    14. Xuanming Su & Stefanos A. Zenios, 2005. "Patient Choice in Kidney Allocation: A Sequential Stochastic Assignment Model," Operations Research, INFORMS, vol. 53(3), pages 443-455, June.
    15. John Hornberger & Jae-Hyeon Ahn, 1997. "Deciding Eligibility for Transplantation When a Donor Kidney Becomes Available," Medical Decision Making, , vol. 17(2), pages 160-170, April.
    16. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2004. "The Optimal Timing of Living-Donor Liver Transplantation," Management Science, INFORMS, vol. 50(10), pages 1420-1430, October.
    17. Israel David & Uri Yechiali, 1985. "A Time-dependent Stopping Problem with Application to Live Organ Transplants," Operations Research, INFORMS, vol. 33(3), pages 491-504, June.
    18. Peter Bruns, 2003. "Optimality of randomized strategies in a Markovian replacement model," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 56(3), pages 481-499, January.
    19. Howard, David H., 2002. "Why do transplant surgeons turn down organs?: A model of the accept/reject decision," Journal of Health Economics, Elsevier, vol. 21(6), pages 957-969, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caulkins, Jonathan P., 2010. "Might randomization in queue discipline be useful when waiting cost is a concave function of waiting time?," Socio-Economic Planning Sciences, Elsevier, vol. 44(1), pages 19-24, March.
    2. Sait Tunç & Burhaneddin Sandıkçı & Bekir Tanrıöver, 2022. "A Simple Incentive Mechanism to Alleviate the Burden of Organ Wastage in Transplantation," Management Science, INFORMS, vol. 68(8), pages 5980-6002, August.
    3. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2007. "Choosing Among Living-Donor and Cadaveric Livers," Management Science, INFORMS, vol. 53(11), pages 1702-1715, November.
    4. Jinghua Shi & Oguzhan Alagoz & Fatih Erenay & Qiang Su, 2014. "A survey of optimization models on cancer chemotherapy treatment planning," Annals of Operations Research, Springer, vol. 221(1), pages 331-356, October.
    5. Sang-Phil Kim & Diwakar Gupta & Ajay Israni & Bertram Kasiske, 2015. "Accept/decline decision module for the liver simulated allocation model," Health Care Management Science, Springer, vol. 18(1), pages 35-57, March.
    6. Oguzhan Alagoz & Jagpreet Chhatwal & Elizabeth S. Burnside, 2013. "Optimal Policies for Reducing Unnecessary Follow-Up Mammography Exams in Breast Cancer Diagnosis," Decision Analysis, INFORMS, vol. 10(3), pages 200-224, September.
    7. Satır, Benhür & Erenay, Fatih Safa & Bookbinder, James H., 2018. "Shipment consolidation with two demand classes: Rationing the dispatch capacity," European Journal of Operational Research, Elsevier, vol. 270(1), pages 171-184.
    8. Ting-Yu Ho & Shan Liu & Zelda B. Zabinsky, 2019. "A Multi-Fidelity Rollout Algorithm for Dynamic Resource Allocation in Population Disease Management," Health Care Management Science, Springer, vol. 22(4), pages 727-755, December.
    9. Chaithanya Bandi & Nikolaos Trichakis & Phebe Vayanos, 2019. "Robust Multiclass Queuing Theory for Wait Time Estimation in Resource Allocation Systems," Management Science, INFORMS, vol. 65(1), pages 152-187, January.
    10. Nan Kong & Andrew J. Schaefer & Brady Hunsaker & Mark S. Roberts, 2010. "Maximizing the Efficiency of the U.S. Liver Allocation System Through Region Design," Management Science, INFORMS, vol. 56(12), pages 2111-2122, December.
    11. E. Lerzan Örmeci & Evrim Didem Güneş & Derya Kunduzcu, 2016. "A Modeling Framework for Control of Preventive Services," Manufacturing & Service Operations Management, INFORMS, vol. 18(2), pages 227-244, May.
    12. Miao He & Lei Zhao & Warren Powell, 2010. "Optimal control of dosage decisions in controlled ovarian hyperstimulation," Annals of Operations Research, Springer, vol. 178(1), pages 223-245, July.
    13. Sakine Batun & Andrew J. Schaefer & Atul Bhandari & Mark S. Roberts, 2018. "Optimal Liver Acceptance for Risk-Sensitive Patients," Service Science, INFORMS, vol. 10(3), pages 320-333, September.
    14. Dimitris Bertsimas & Vivek F. Farias & Nikolaos Trichakis, 2013. "Fairness, Efficiency, and Flexibility in Organ Allocation for Kidney Transplantation," Operations Research, INFORMS, vol. 61(1), pages 73-87, February.
    15. Sommer Gentry & Eric Chow & Allan Massie & Dorry Segev, 2015. "Gerrymandering for Justice: Redistricting U.S. Liver Allocation," Interfaces, INFORMS, vol. 45(5), pages 462-480, October.
    16. Ozge Ceren Ersoy & Diwakar Gupta & Timothy Pruett, 2021. "A critical look at the U.S. deceased‐donor organ procurement and utilization system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 3-29, February.
    17. Farhad Hasankhani & Amin Khademi, 2021. "Is it Time to Include Post‐Transplant Survival in Heart Transplantation Allocation Rules?," Production and Operations Management, Production and Operations Management Society, vol. 30(8), pages 2653-2671, August.
    18. Kargar, Bahareh & Pishvaee, Mir Saman & Jahani, Hamed & Sheu, Jiuh-Biing, 2020. "Organ transportation and allocation problem under medical uncertainty: A real case study of liver transplantation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    19. Vishal Ahuja & Carlos A. Alvarez & John R. Birge & Chad Syverson, 2021. "Enhancing Regulatory Decision Making for Postmarket Drug Safety," Management Science, INFORMS, vol. 67(12), pages 7493-7510, December.
    20. Shan Liu & Margaret L. Brandeau & Jeremy D. Goldhaber-Fiebert, 2017. "Optimizing patient treatment decisions in an era of rapid technological advances: the case of hepatitis C treatment," Health Care Management Science, Springer, vol. 20(1), pages 16-32, March.
    21. Kotas, Jakob & Ghate, Archis, 2018. "Bayesian learning of dose–response parameters from a cohort under response-guided dosing," European Journal of Operational Research, Elsevier, vol. 265(1), pages 328-343.
    22. Sahar Ahmadvand & Mir Saman Pishvaee, 2018. "An efficient method for kidney allocation problem: a credibility-based fuzzy common weights data envelopment analysis approach," Health Care Management Science, Springer, vol. 21(4), pages 587-603, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2004. "The Optimal Timing of Living-Donor Liver Transplantation," Management Science, INFORMS, vol. 50(10), pages 1420-1430, October.
    2. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2007. "Choosing Among Living-Donor and Cadaveric Livers," Management Science, INFORMS, vol. 53(11), pages 1702-1715, November.
    3. Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Oguzhan Alagoz & Mark S. Roberts, 2008. "Estimating the Patient's Price of Privacy in Liver Transplantation," Operations Research, INFORMS, vol. 56(6), pages 1393-1410, December.
    4. Sakine Batun & Andrew J. Schaefer & Atul Bhandari & Mark S. Roberts, 2018. "Optimal Liver Acceptance for Risk-Sensitive Patients," Service Science, INFORMS, vol. 10(3), pages 320-333, September.
    5. Mustafa Akan & Oguzhan Alagoz & Baris Ata & Fatih Safa Erenay & Adnan Said, 2012. "A Broader View of Designing the Liver Allocation System," Operations Research, INFORMS, vol. 60(4), pages 757-770, August.
    6. Kargar, Bahareh & Pishvaee, Mir Saman & Jahani, Hamed & Sheu, Jiuh-Biing, 2020. "Organ transportation and allocation problem under medical uncertainty: A real case study of liver transplantation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    7. Barış Ata & Anton Skaro & Sridhar Tayur, 2017. "OrganJet: Overcoming Geographical Disparities in Access to Deceased Donor Kidneys in the United States," Management Science, INFORMS, vol. 63(9), pages 2776-2794, September.
    8. Murat Kurt & Mark S. Roberts & Andrew J. Schaefer & M. Utku Ünver, 2011. "Valuing Prearranged Paired Kidney Exchanges: A Stochastic Game Approach," Boston College Working Papers in Economics 785, Boston College Department of Economics, revised 14 Oct 2011.
    9. Dimitris Bertsimas & Vivek F. Farias & Nikolaos Trichakis, 2013. "Fairness, Efficiency, and Flexibility in Organ Allocation for Kidney Transplantation," Operations Research, INFORMS, vol. 61(1), pages 73-87, February.
    10. Sahar Ahmadvand & Mir Saman Pishvaee, 2018. "An efficient method for kidney allocation problem: a credibility-based fuzzy common weights data envelopment analysis approach," Health Care Management Science, Springer, vol. 21(4), pages 587-603, December.
    11. Yael Deutsch & Israel David, 2020. "Benchmark policies for utility-carrying queues with impatience," Queueing Systems: Theory and Applications, Springer, vol. 95(1), pages 97-120, June.
    12. Stefanos A. Zenios & Glenn M. Chertow & Lawrence M. Wein, 2000. "Dynamic Allocation of Kidneys to Candidates on the Transplant Waiting List," Operations Research, INFORMS, vol. 48(4), pages 549-569, August.
    13. Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2013. "Alleviating the Patient's Price of Privacy Through a Partially Observable Waiting List," Management Science, INFORMS, vol. 59(8), pages 1836-1854, August.
    14. Xuanming Su & Stefanos A. Zenios, 2005. "Patient Choice in Kidney Allocation: A Sequential Stochastic Assignment Model," Operations Research, INFORMS, vol. 53(3), pages 443-455, June.
    15. Xuanming Su & Stefanos A. Zenios, 2006. "Recipient Choice Can Address the Efficiency-Equity Trade-off in Kidney Transplantation: A Mechanism Design Model," Management Science, INFORMS, vol. 52(11), pages 1647-1660, November.
    16. Baris Ata & Yichuan Ding & Stefanos Zenios, 2021. "An Achievable-Region-Based Approach for Kidney Allocation Policy Design with Endogenous Patient Choice," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 36-54, 1-2.
    17. Zahra Gharibi & Michael Hahsler, 2021. "A Simulation-Based Optimization Model to Study the Impact of Multiple-Region Listing and Information Sharing on Kidney Transplant Outcomes," IJERPH, MDPI, vol. 18(3), pages 1-20, January.
    18. Alireza Sabouri & Woonghee Tim Huh & Steven M. Shechter, 2017. "Screening Strategies for Patients on the Kidney Transplant Waiting List," Operations Research, INFORMS, vol. 65(5), pages 1131-1146, October.
    19. Sang-Phil Kim & Diwakar Gupta & Ajay Israni & Bertram Kasiske, 2015. "Accept/decline decision module for the liver simulated allocation model," Health Care Management Science, Springer, vol. 18(1), pages 35-57, March.
    20. Nan Kong & Andrew J. Schaefer & Brady Hunsaker & Mark S. Roberts, 2010. "Maximizing the Efficiency of the U.S. Liver Allocation System Through Region Design," Management Science, INFORMS, vol. 56(12), pages 2111-2122, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:55:y:2007:i:1:p:24-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.