IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v59y2013i8p1836-1854.html
   My bibliography  Save this article

Alleviating the Patient's Price of Privacy Through a Partially Observable Waiting List

Author

Listed:
  • Burhaneddin Sandıkçı

    (Booth School of Business, University of Chicago, Chicago, Illinois 60637)

  • Lisa M. Maillart

    (Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261)

  • Andrew J. Schaefer

    (Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261)

  • Mark S. Roberts

    (Department of Health Policy and Management, University of Pittsburgh, Pittsburgh, Pennsylvania 15261)

Abstract

In the United States, end-stage liver disease patients join a waiting list and then make accept/reject decisions for transplantation as deceased-donor organs are offered to them over time. These decisions are largely influenced by the patient's prospect for future offers, which can be ascertained most accurately by knowing the entire composition of the waiting list. Under the current transplantation system, however, the United Network for Organ Sharing (UNOS), in an effort to strike a balance between privacy and transparency, only publishes an aggregated version of the waiting list. However, it is not clear whether the published information is good enough (compared with perfect information) to help patients make optimal decisions that maximize their individual life expectancies. We provide a novel model of this accept/reject problem from an individual patient's perspective using a partially observed Markov decision process (POMDP) framework, which incorporates the imperfect waiting list information as published currently into the patient's decision making. We analyze structural properties of this model. In particular, we establish conditions that guarantee a monotone value function and a threshold-type optimal policy with respect to the partially observable rank state that captures the imperfect waiting list information. Furthermore, we develop an improved solution methodology to solve a generic POMDP model. This solution method guarantees, for any fixed grid, the best possible approximation to the optimal value function by solving linear programs to compute the optimal weights used for the approximation. Finally, we compare, in a clinically driven numerical study, the results of this model with those of an existing Markov decision process model that differs from our model in assuming the availability of perfect waiting list information. This comparison allows us to assess the quality of the published imperfect information as measured by a patient's so-called price of privacy (i.e., the opportunity loss in expected life days due to a lack of perfect waiting list information). Previous work estimates a significant loss in a patient's life expectancy, on average, when the patient has no waiting list information compared with full information. In this paper, we find that the currently published partial information is nearly sufficient to eliminate this loss, resulting in a negligible price of privacy and supporting current UNOS practice. This paper was accepted by Assaf Zeevi, stochastic models and simulation.

Suggested Citation

  • Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2013. "Alleviating the Patient's Price of Privacy Through a Partially Observable Waiting List," Management Science, INFORMS, vol. 59(8), pages 1836-1854, August.
  • Handle: RePEc:inm:ormnsc:v:59:y:2013:i:8:p:1836-1854
    DOI: 10.1287/mnsc.1120.1671
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1120.1671
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1120.1671?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William S. Lovejoy, 1991. "Computationally Feasible Bounds for Partially Observed Markov Decision Processes," Operations Research, INFORMS, vol. 39(1), pages 162-175, February.
    2. Turgay Ayer & Oguzhan Alagoz & Natasha K. Stout, 2012. "OR Forum---A POMDP Approach to Personalize Mammography Screening Decisions," Operations Research, INFORMS, vol. 60(5), pages 1019-1034, October.
    3. Oguzhan Alagoz & Cindy L. Bryce & Steven Shechter & Andrew Schaefer & Chung-Chou H. Chang & Derek C. Angus & Mark S. Roberts, 2005. "Incorporating Biological Natural History in Simulation Models: Empirical Estimates of the Progression of End-Stage Liver Disease," Medical Decision Making, , vol. 25(6), pages 620-632, November.
    4. Israel David & Uri Yechiali, 1995. "One-Attribute Sequential Assignment Match Processes in Discrete Time," Operations Research, INFORMS, vol. 43(5), pages 879-884, October.
    5. Steven M. Shechter & Cindy L. Bryce & Oguzhan Alagoz & Jennifer E. Kreke & James E. Stahl & Andrew J. Schaefer & Derek C. Angus & Mark S. Roberts, 2005. "A Clinically Based Discrete-Event Simulation of End-Stage Liver Disease and the Organ Allocation Process," Medical Decision Making, , vol. 25(2), pages 199-209, March.
    6. Stefanos A. Zenios & Glenn M. Chertow & Lawrence M. Wein, 2000. "Dynamic Allocation of Kidneys to Candidates on the Transplant Waiting List," Operations Research, INFORMS, vol. 48(4), pages 549-569, August.
    7. Xuanming Su & Stefanos Zenios, 2004. "Patient Choice in Kidney Allocation: The Role of the Queueing Discipline," Manufacturing & Service Operations Management, INFORMS, vol. 6(4), pages 280-301, June.
    8. Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Oguzhan Alagoz & Mark S. Roberts, 2008. "Estimating the Patient's Price of Privacy in Liver Transplantation," Operations Research, INFORMS, vol. 56(6), pages 1393-1410, December.
    9. Xuanming Su & Stefanos A. Zenios, 2005. "Patient Choice in Kidney Allocation: A Sequential Stochastic Assignment Model," Operations Research, INFORMS, vol. 53(3), pages 443-455, June.
    10. Lisa M. Maillart & Julie Simmons Ivy & Scott Ransom & Kathleen Diehl, 2008. "Assessing Dynamic Breast Cancer Screening Policies," Operations Research, INFORMS, vol. 56(6), pages 1411-1427, December.
    11. Richard D. Smallwood & Edward J. Sondik, 1973. "The Optimal Control of Partially Observable Markov Processes over a Finite Horizon," Operations Research, INFORMS, vol. 21(5), pages 1071-1088, October.
    12. Xuanming Su & Stefanos A. Zenios, 2006. "Recipient Choice Can Address the Efficiency-Equity Trade-off in Kidney Transplantation: A Mechanism Design Model," Management Science, INFORMS, vol. 52(11), pages 1647-1660, November.
    13. Jingyu Zhang & Brian T. Denton & Hari Balasubramanian & Nilay D. Shah & Brant A. Inman, 2012. "Optimization of Prostate Biopsy Referral Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 529-547, October.
    14. Jae-Hyeon Ahn & John C. Hornberger, 1996. "Involving Patients in the Cadaveric Kidney Transplant Allocation Process: A Decision-Theoretic Perspective," Management Science, INFORMS, vol. 42(5), pages 629-641, May.
    15. William S. Lovejoy, 1987. "Some Monotonicity Results for Partially Observed Markov Decision Processes," Operations Research, INFORMS, vol. 35(5), pages 736-743, October.
    16. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2007. "Choosing Among Living-Donor and Cadaveric Livers," Management Science, INFORMS, vol. 53(11), pages 1702-1715, November.
    17. Chuanpu Hu & William S. Lovejoy & Steven L. Shafer, 1996. "Comparison of Some Suboptimal Control Policies in Medical Drug Therapy," Operations Research, INFORMS, vol. 44(5), pages 696-709, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Weiyu & Denton, Brian T. & Morgan, Todd M., 2023. "Optimizing active surveillance for prostate cancer using partially observable Markov decision processes," European Journal of Operational Research, Elsevier, vol. 305(1), pages 386-399.
    2. Ting-Yu Ho & Shan Liu & Zelda B. Zabinsky, 2019. "A Multi-Fidelity Rollout Algorithm for Dynamic Resource Allocation in Population Disease Management," Health Care Management Science, Springer, vol. 22(4), pages 727-755, December.
    3. Chaithanya Bandi & Nikolaos Trichakis & Phebe Vayanos, 2019. "Robust Multiclass Queuing Theory for Wait Time Estimation in Resource Allocation Systems," Management Science, INFORMS, vol. 65(1), pages 152-187, January.
    4. Boloori, Alireza & Saghafian, Soroush & Chakkera, Harini A. A. & Cook, Curtiss B., 2017. "Data-Driven Management of Post-transplant Medications: An APOMDP Approach," Working Paper Series rwp17-036, Harvard University, John F. Kennedy School of Government.
    5. Zheng Zhang & Brian T. Denton & Todd M. Morgan, 2022. "Optimization of active surveillance strategies for heterogeneous patients with prostate cancer," Production and Operations Management, Production and Operations Management Society, vol. 31(11), pages 4021-4037, November.
    6. Tinglong Dai & Sridhar Tayur, 2020. "OM Forum—Healthcare Operations Management: A Snapshot of Emerging Research," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 869-887, September.
    7. Barış Ata & Anton Skaro & Sridhar Tayur, 2017. "OrganJet: Overcoming Geographical Disparities in Access to Deceased Donor Kidneys in the United States," Management Science, INFORMS, vol. 63(9), pages 2776-2794, September.
    8. Ozge Ceren Ersoy & Diwakar Gupta & Timothy Pruett, 2021. "A critical look at the U.S. deceased‐donor organ procurement and utilization system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 3-29, February.
    9. Baris Ata & Yichuan Ding & Stefanos Zenios, 2021. "An Achievable-Region-Based Approach for Kidney Allocation Policy Design with Endogenous Patient Choice," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 36-54, 1-2.
    10. Tinglong Dai & Ronghuo Zheng & Katia Sycara, 2020. "Jumping the Line, Charitably: Analysis and Remedy of Donor-Priority Rule," Management Science, INFORMS, vol. 66(2), pages 622-641, February.
    11. M. Reza Skandari & Steven M. Shechter, 2021. "Patient-Type Bayes-Adaptive Treatment Plans," Operations Research, INFORMS, vol. 69(2), pages 574-598, March.
    12. Guihua Wang & Ronghuo Zheng & Tinglong Dai, 2022. "Does Transportation Mean Transplantation? Impact of New Airline Routes on Sharing of Cadaveric Kidneys," Management Science, INFORMS, vol. 68(5), pages 3660-3679, May.
    13. Sait Tunç & Burhaneddin Sandıkçı & Bekir Tanrıöver, 2022. "A Simple Incentive Mechanism to Alleviate the Burden of Organ Wastage in Transplantation," Management Science, INFORMS, vol. 68(8), pages 5980-6002, August.
    14. Miehling, Erik & Teneketzis, Demosthenis, 2020. "Monotonicity properties for two-action partially observable Markov decision processes on partially ordered spaces," European Journal of Operational Research, Elsevier, vol. 282(3), pages 936-944.
    15. Sakine Batun & Andrew J. Schaefer & Atul Bhandari & Mark S. Roberts, 2018. "Optimal Liver Acceptance for Risk-Sensitive Patients," Service Science, INFORMS, vol. 10(3), pages 320-333, September.
    16. Sepehr Nemati & Zeynep G. Icten & Lisa M. Maillart & Andrew J. Schaefer, 2020. "Mitigating Information Asymmetry in Liver Allocation," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 234-248, April.
    17. Juri Hinz, 2021. "On Approximate Solutions for Partially Observable Decision Problems," Research Paper Series 421, Quantitative Finance Research Centre, University of Technology, Sydney.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Oguzhan Alagoz & Mark S. Roberts, 2008. "Estimating the Patient's Price of Privacy in Liver Transplantation," Operations Research, INFORMS, vol. 56(6), pages 1393-1410, December.
    2. Mustafa Akan & Oguzhan Alagoz & Baris Ata & Fatih Safa Erenay & Adnan Said, 2012. "A Broader View of Designing the Liver Allocation System," Operations Research, INFORMS, vol. 60(4), pages 757-770, August.
    3. Barış Ata & Anton Skaro & Sridhar Tayur, 2017. "OrganJet: Overcoming Geographical Disparities in Access to Deceased Donor Kidneys in the United States," Management Science, INFORMS, vol. 63(9), pages 2776-2794, September.
    4. Dimitris Bertsimas & Vivek F. Farias & Nikolaos Trichakis, 2013. "Fairness, Efficiency, and Flexibility in Organ Allocation for Kidney Transplantation," Operations Research, INFORMS, vol. 61(1), pages 73-87, February.
    5. Murat Kurt & Mark S. Roberts & Andrew J. Schaefer & M. Utku Ünver, 2011. "Valuing Prearranged Paired Kidney Exchanges: A Stochastic Game Approach," Boston College Working Papers in Economics 785, Boston College Department of Economics, revised 14 Oct 2011.
    6. Alireza Sabouri & Woonghee Tim Huh & Steven M. Shechter, 2017. "Screening Strategies for Patients on the Kidney Transplant Waiting List," Operations Research, INFORMS, vol. 65(5), pages 1131-1146, October.
    7. Ozge Ceren Ersoy & Diwakar Gupta & Timothy Pruett, 2021. "A critical look at the U.S. deceased‐donor organ procurement and utilization system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 3-29, February.
    8. Sakine Batun & Andrew J. Schaefer & Atul Bhandari & Mark S. Roberts, 2018. "Optimal Liver Acceptance for Risk-Sensitive Patients," Service Science, INFORMS, vol. 10(3), pages 320-333, September.
    9. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2007. "Determining the Acceptance of Cadaveric Livers Using an Implicit Model of the Waiting List," Operations Research, INFORMS, vol. 55(1), pages 24-36, February.
    10. Baris Ata & Yichuan Ding & Stefanos Zenios, 2021. "An Achievable-Region-Based Approach for Kidney Allocation Policy Design with Endogenous Patient Choice," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 36-54, 1-2.
    11. Sahar Ahmadvand & Mir Saman Pishvaee, 2018. "An efficient method for kidney allocation problem: a credibility-based fuzzy common weights data envelopment analysis approach," Health Care Management Science, Springer, vol. 21(4), pages 587-603, December.
    12. Zahra Gharibi & Michael Hahsler, 2021. "A Simulation-Based Optimization Model to Study the Impact of Multiple-Region Listing and Information Sharing on Kidney Transplant Outcomes," IJERPH, MDPI, vol. 18(3), pages 1-20, January.
    13. Kargar, Bahareh & Pishvaee, Mir Saman & Jahani, Hamed & Sheu, Jiuh-Biing, 2020. "Organ transportation and allocation problem under medical uncertainty: A real case study of liver transplantation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    14. Sait Tunç & Burhaneddin Sandıkçı & Bekir Tanrıöver, 2022. "A Simple Incentive Mechanism to Alleviate the Burden of Organ Wastage in Transplantation," Management Science, INFORMS, vol. 68(8), pages 5980-6002, August.
    15. Boloori, Alireza & Saghafian, Soroush & Chakkera, Harini A. A. & Cook, Curtiss B., 2017. "Data-Driven Management of Post-transplant Medications: An APOMDP Approach," Working Paper Series rwp17-036, Harvard University, John F. Kennedy School of Government.
    16. Sepehr Nemati & Zeynep G. Icten & Lisa M. Maillart & Andrew J. Schaefer, 2020. "Mitigating Information Asymmetry in Liver Allocation," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 234-248, April.
    17. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2007. "Choosing Among Living-Donor and Cadaveric Livers," Management Science, INFORMS, vol. 53(11), pages 1702-1715, November.
    18. Hossein Kamalzadeh & Vishal Ahuja & Michael Hahsler & Michael E. Bowen, 2021. "An Analytics‐Driven Approach for Optimal Individualized Diabetes Screening," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3161-3191, September.
    19. Robert Kraig Helmeczi & Can Kavaklioglu & Mucahit Cevik & Davood Pirayesh Neghab, 2023. "A multi-objective constrained partially observable Markov decision process model for breast cancer screening," Operational Research, Springer, vol. 23(2), pages 1-42, June.
    20. Can Zhang & Atalay Atasu & Turgay Ayer & L. Beril Toktay, 2020. "Truthful Mechanisms for Medical Surplus Product Allocation," Manufacturing & Service Operations Management, INFORMS, vol. 22(4), pages 735-753, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:59:y:2013:i:8:p:1836-1854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.