IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v53y2005i3p443-455.html
   My bibliography  Save this article

Patient Choice in Kidney Allocation: A Sequential Stochastic Assignment Model

Author

Listed:
  • Xuanming Su

    (Walter A. Haas School of Business, University of California, Berkeley, California 94720)

  • Stefanos A. Zenios

    (Graduate School of Business, Stanford University, 518 Memorial Way, Stanford, California 94305)

Abstract

This paper investigates the effect of patient choice on kidney allocation using the following sequential stochastic assignment model. There are n transplant patients to be allocated n kidneys that will arrive sequentially. Each patient and each kidney has its own type, kidney types are random and revealed upon arrival, and the reward from allocating a kidney to a particular patient depends on both their types. Patients may choose to accept or decline any kidney offer.The objective is to determine a kidney allocation policy that maximizes total expected reward subject to the constraint that patients will only accept offers that maximize their own expected reward. A partition policy, in which the space of kidney types is divided into different domains (each corresponding to a different patient type) and in which each kidney is allocated to the patient type corresponding to its domain, is shown to be asymptotically optimal when patients must accept all kidney offers. To reflect patient choice, an incentive compatibility condition is derived to ensure that the offers made by the allocation policy are never declined. This condition is then used to derive a “second-best” partition policy. A numerical example, based on data from the US transplantation system, demonstrates that patient choice may introduce substantial inefficiencies, but the second-best policy recovers all the losses by minimizing the variability in the type of offers expected by each patient. Thus, policy makers should explicitly recognize the effect of patient choice when designing a kidney allocation system.

Suggested Citation

  • Xuanming Su & Stefanos A. Zenios, 2005. "Patient Choice in Kidney Allocation: A Sequential Stochastic Assignment Model," Operations Research, INFORMS, vol. 53(3), pages 443-455, June.
  • Handle: RePEc:inm:oropre:v:53:y:2005:i:3:p:443-455
    DOI: 10.1287/opre.1040.0180
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1040.0180
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1040.0180?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Israel David & Uri Yechiali, 1995. "One-Attribute Sequential Assignment Match Processes in Discrete Time," Operations Research, INFORMS, vol. 43(5), pages 879-884, October.
    2. Cyrus Derman & Gerald J. Lieberman & Sheldon M. Ross, 1972. "A Sequential Stochastic Assignment Problem," Management Science, INFORMS, vol. 18(7), pages 349-355, March.
    3. Stefanos A. Zenios & Glenn M. Chertow & Lawrence M. Wein, 2000. "Dynamic Allocation of Kidneys to Candidates on the Transplant Waiting List," Operations Research, INFORMS, vol. 48(4), pages 549-569, August.
    4. Jae-Hyeon Ahn & John C. Hornberger, 1996. "Involving Patients in the Cadaveric Kidney Transplant Allocation Process: A Decision-Theoretic Perspective," Management Science, INFORMS, vol. 42(5), pages 629-641, May.
    5. Rhonda Righter, 1989. "A Resource Allocation Problem in a Random Environment," Operations Research, INFORMS, vol. 37(2), pages 329-338, April.
    6. S. Christian Albright, 1977. "A Bayesian Approach to a Generalized House Selling Problem," Management Science, INFORMS, vol. 24(4), pages 432-440, December.
    7. S. Christian Albright, 1974. "Optimal Sequential Assignments with Random Arrival Times," Management Science, INFORMS, vol. 21(1), pages 60-67, September.
    8. Chris Albright & Cyrus Derman, 1972. "Asymptotic Optimal Policies for the Stochastic Sequential Assignment Problem," Management Science, INFORMS, vol. 19(1), pages 46-51, September.
    9. Toru Nakai, 1986. "A Sequential Stochastic Assignment Problem in a Partially Observable Markov Chain," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 230-240, May.
    10. D. P. Kennedy, 1986. "Optimal Sequential Assignment," Mathematics of Operations Research, INFORMS, vol. 11(4), pages 619-626, November.
    11. Israel David & Uri Yechiali, 1985. "A Time-dependent Stopping Problem with Application to Live Organ Transplants," Operations Research, INFORMS, vol. 33(3), pages 491-504, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arash Khatibi & Sheldon H. Jacobson, 2016. "Doubly Stochastic Sequential Assignment Problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(2), pages 124-137, March.
    2. Tianke Feng & Joseph C. Hartman, 2015. "The dynamic and stochastic knapsack Problem with homogeneous‐sized items and postponement options," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(4), pages 267-292, June.
    3. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2007. "Determining the Acceptance of Cadaveric Livers Using an Implicit Model of the Waiting List," Operations Research, INFORMS, vol. 55(1), pages 24-36, February.
    4. Baris Ata & Yichuan Ding & Stefanos Zenios, 2021. "An Achievable-Region-Based Approach for Kidney Allocation Policy Design with Endogenous Patient Choice," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 36-54, 1-2.
    5. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2004. "The Optimal Timing of Living-Donor Liver Transplantation," Management Science, INFORMS, vol. 50(10), pages 1420-1430, October.
    6. Sheldon Ross & David Wu, 2013. "A generalized coupon collecting model as a parsimonious optimal stochastic assignment model," Annals of Operations Research, Springer, vol. 208(1), pages 133-146, September.
    7. Kargar, Bahareh & Pishvaee, Mir Saman & Jahani, Hamed & Sheu, Jiuh-Biing, 2020. "Organ transportation and allocation problem under medical uncertainty: A real case study of liver transplantation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    8. Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Oguzhan Alagoz & Mark S. Roberts, 2008. "Estimating the Patient's Price of Privacy in Liver Transplantation," Operations Research, INFORMS, vol. 56(6), pages 1393-1410, December.
    9. C G Lennon & J M McGowan & K Y Lin, 2008. "A game-theoretic model for repeated assignment problem between two selfish agents," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(12), pages 1652-1658, December.
    10. Stefanos A. Zenios & Glenn M. Chertow & Lawrence M. Wein, 2000. "Dynamic Allocation of Kidneys to Candidates on the Transplant Waiting List," Operations Research, INFORMS, vol. 48(4), pages 549-569, August.
    11. Murat Kurt & Mark S. Roberts & Andrew J. Schaefer & M. Utku Ünver, 2011. "Valuing Prearranged Paired Kidney Exchanges: A Stochastic Game Approach," Boston College Working Papers in Economics 785, Boston College Department of Economics, revised 14 Oct 2011.
    12. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2007. "Choosing Among Living-Donor and Cadaveric Livers," Management Science, INFORMS, vol. 53(11), pages 1702-1715, November.
    13. David, Israel & Levi, Ofer, 2004. "A new algorithm for the multi-item exponentially discounted optimal selection problem," European Journal of Operational Research, Elsevier, vol. 153(3), pages 782-789, March.
    14. David T. Wu & Sheldon M. Ross, 2015. "A stochastic assignment problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(1), pages 23-31, February.
    15. Sakine Batun & Andrew J. Schaefer & Atul Bhandari & Mark S. Roberts, 2018. "Optimal Liver Acceptance for Risk-Sensitive Patients," Service Science, INFORMS, vol. 10(3), pages 320-333, September.
    16. Dimitris Bertsimas & Vivek F. Farias & Nikolaos Trichakis, 2013. "Fairness, Efficiency, and Flexibility in Organ Allocation for Kidney Transplantation," Operations Research, INFORMS, vol. 61(1), pages 73-87, February.
    17. Meghan Shanks & Ge Yu & Sheldon H. Jacobson, 2023. "Approximation algorithms for stochastic online matching with reusable resources," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(1), pages 43-56, August.
    18. Alexander G. Nikolaev & Sheldon H. Jacobson, 2010. "Technical Note ---Stochastic Sequential Decision-Making with a Random Number of Jobs," Operations Research, INFORMS, vol. 58(4-part-1), pages 1023-1027, August.
    19. Sahar Ahmadvand & Mir Saman Pishvaee, 2018. "An efficient method for kidney allocation problem: a credibility-based fuzzy common weights data envelopment analysis approach," Health Care Management Science, Springer, vol. 21(4), pages 587-603, December.
    20. Mustafa Akan & Oguzhan Alagoz & Baris Ata & Fatih Safa Erenay & Adnan Said, 2012. "A Broader View of Designing the Liver Allocation System," Operations Research, INFORMS, vol. 60(4), pages 757-770, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:53:y:2005:i:3:p:443-455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.