IDEAS home Printed from https://ideas.repec.org/a/inm/ormsom/v15y2013i2p205-220.html
   My bibliography  Save this article

A Dispatching Model for Server-to-Customer Systems That Balances Efficiency and Equity

Author

Listed:
  • Laura A. McLay

    (Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, Virginia 23284)

  • Maria E. Mayorga

    (Department of Industrial Engineering, Clemson University, Clemson, South Carolina 29634)

Abstract

The decision about which servers to dispatch to which customers is an important aspect of service systems. This decision is complicated when servers must be equitably—as well as efficiently—dispatched to customers. In this paper, we formulate a model for determining how to optimally dispatch distinguishable servers to prioritized customers given a set of equity constraints. These issues are examined through the lens of emergency medical service (EMS) dispatch, for which a Markov decision process model is developed that captures how to dispatch ambulances (servers) to prioritized patients (customers). It is assumed that customers arrive sequentially, with the priority and location of each customer becoming known upon arrival. Four types of equity constraints are considered—two of which reflect customer equity and two of which reflect server equity—all of which draw upon the decision analytic and social science literature to compare the effects of different notions of equity on the resulting dispatching policies. The Markov decision processes are formulated as equity-constrained linear programming models. A computational example is applied to an EMS system to compare the different equity models.

Suggested Citation

  • Laura A. McLay & Maria E. Mayorga, 2013. "A Dispatching Model for Server-to-Customer Systems That Balances Efficiency and Equity," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 205-220, May.
  • Handle: RePEc:inm:ormsom:v:15:y:2013:i:2:p:205-220
    DOI: 10.1287/msom.1120.0411
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/msom.1120.0411
    Download Restriction: no

    File URL: https://libkey.io/10.1287/msom.1120.0411?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mateo Restrepo & Shane Henderson & Huseyin Topaloglu, 2009. "Erlang loss models for the static deployment of ambulances," Health Care Management Science, Springer, vol. 12(1), pages 67-79, March.
    2. E. Ignall & G. Carter & K. Rider, 1982. "An Algorithm for the Initial Dispatch of Fire Companies," Management Science, INFORMS, vol. 28(4), pages 366-378, April.
    3. E. S. Savas, 1978. "On Equity in Providing Public Services," Management Science, INFORMS, vol. 24(8), pages 800-808, April.
    4. A Weintraub & J Aboud & C Fernandez & G Laporte & E Ramirez, 1999. "An emergency vehicle dispatching system for an electric utility in Chile," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(7), pages 690-696, July.
    5. Marsh, Michael T. & Schilling, David A., 1994. "Equity measurement in facility location analysis: A review and framework," European Journal of Operational Research, Elsevier, vol. 74(1), pages 1-17, April.
    6. Ralph L. Keeney & Robert L. Winkler, 1985. "Evaluating Decision Strategies for Equity of Public Risks," Operations Research, INFORMS, vol. 33(5), pages 955-970, October.
    7. Felder, Stefan & Brinkmann, Henrik, 2002. "Spatial allocation of emergency medical services: minimising the death rate or providing equal access?," Regional Science and Urban Economics, Elsevier, vol. 32(1), pages 27-45, January.
    8. Arthur J. Swersey, 1982. "A Markovian Decision Model for Deciding How Many Fire Companies to Dispatch," Management Science, INFORMS, vol. 28(4), pages 352-365, April.
    9. Grace M. Carter & Jan M. Chaiken & Edward Ignall, 1972. "Response Areas for Two Emergency Units," Operations Research, INFORMS, vol. 20(3), pages 571-594, June.
    10. Laura McLay & Maria Mayorga, 2010. "Evaluating emergency medical service performance measures," Health Care Management Science, Springer, vol. 13(2), pages 124-136, June.
    11. Laura McLay & Maria Mayorga, 2013. "A model for optimally dispatching ambulances to emergency calls with classification errors in patient priorities," IISE Transactions, Taylor & Francis Journals, vol. 45(1), pages 1-24.
    12. Rakesh Kumar Sarin, 1985. "Technical Note—Measuring Equity in Public Risk," Operations Research, INFORMS, vol. 33(1), pages 210-217, February.
    13. G Erdoğan & E Erkut & A Ingolfsson & G Laporte, 2010. "Scheduling ambulance crews for maximum coverage," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 543-550, April.
    14. Mor Armony & Amy R. Ward, 2010. "Fair Dynamic Routing in Large-Scale Heterogeneous-Server Systems," Operations Research, INFORMS, vol. 58(3), pages 624-637, June.
    15. Kenneth R. Chelst & Ziv Barlach, 1981. "Multiple Unit Dispatches in Emergency Services: Models to Estimate System Performance," Management Science, INFORMS, vol. 27(12), pages 1390-1409, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    2. C. J. Jagtenberg & S. Bhulai & R. D. Mei, 2017. "Dynamic ambulance dispatching: is the closest-idle policy always optimal?," Health Care Management Science, Springer, vol. 20(4), pages 517-531, December.
    3. Sudtachat, Kanchala & Mayorga, Maria E. & Mclay, Laura A., 2016. "A nested-compliance table policy for emergency medical service systems under relocation," Omega, Elsevier, vol. 58(C), pages 154-168.
    4. Wang, Wei & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2022. "EMS location-allocation problem under uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    5. Shuangchi He & Melvyn Sim & Meilin Zhang, 2019. "Data-Driven Patient Scheduling in Emergency Departments: A Hybrid Robust-Stochastic Approach," Management Science, INFORMS, vol. 65(9), pages 4123-4140, September.
    6. Yoon, Soovin & Albert, Laura A., 2020. "A dynamic ambulance routing model with multiple response," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    7. Wang, Qingyi & Reed, Ashley & Nie, Xiaofeng, 2022. "Joint initial dispatching of official responders and registered volunteers during catastrophic mass-casualty incidents," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    8. Yoon, Soovin & Albert, Laura A., 2021. "Dynamic dispatch policies for emergency response with multiple types of vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    9. Adam Behrendt & Vineet M. Payyappalli & Jun Zhuang, 2019. "Modeling the Cost Effectiveness of Fire Protection Resource Allocation in the United States: Models and a 1980–2014 Case Study," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1358-1381, June.
    10. Amiri-Aref, Mehdi & Farahani, Reza Zanjirani & Hewitt, Mike & Klibi, Walid, 2019. "Equitable location of facilities in a region with probabilistic barriers to travel," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 66-85.
    11. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    12. Argyris, Nikolaos & Karsu, Özlem & Yavuz, Mirel, 2022. "Fair resource allocation: Using welfare-based dominance constraints," European Journal of Operational Research, Elsevier, vol. 297(2), pages 560-578.
    13. Rettke, Aaron J. & Robbins, Matthew J. & Lunday, Brian J., 2016. "Approximate dynamic programming for the dispatch of military medical evacuation assets," European Journal of Operational Research, Elsevier, vol. 254(3), pages 824-839.
    14. Luo, Weicong & Yao, Jing & Mitchell, Richard & Zhang, Xiaoxiang & Li, Wenqiang, 2022. "Locating emergency medical services to reduce urban-rural inequalities," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    15. Janiele E. S. C. Custodio & Miguel A. Lejeune, 2022. "Spatiotemporal Data Set for Out-of-Hospital Cardiac Arrests," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 4-10, January.
    16. Soovin Yoon & Laura A. Albert, 2018. "An expected coverage model with a cutoff priority queue," Health Care Management Science, Springer, vol. 21(4), pages 517-533, December.
    17. Tinglong Dai & Sridhar Tayur, 2020. "OM Forum—Healthcare Operations Management: A Snapshot of Emerging Research," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 869-887, September.
    18. Li, Mengyu & Carter, Alix & Goldstein, Judah & Hawco, Terence & Jensen, Jan & Vanberkel, Peter, 2021. "Determining ambulance destinations when facing offload delays using a Markov decision process," Omega, Elsevier, vol. 101(C).
    19. Pinar Keskinocak & Nicos Savva, 2020. "A Review of the Healthcare-Management (Modeling) Literature Published in Manufacturing & Service Operations Management," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 59-72, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    2. Rettke, Aaron J. & Robbins, Matthew J. & Lunday, Brian J., 2016. "Approximate dynamic programming for the dispatch of military medical evacuation assets," European Journal of Operational Research, Elsevier, vol. 254(3), pages 824-839.
    3. Sardar Ansari & Laura Albert McLay & Maria E. Mayorga, 2017. "A Maximum Expected Covering Problem for District Design," Transportation Science, INFORMS, vol. 51(1), pages 376-390, February.
    4. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    5. Wang, Qingyi & Reed, Ashley & Nie, Xiaofeng, 2022. "Joint initial dispatching of official responders and registered volunteers during catastrophic mass-casualty incidents," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    6. Linda V. Green & Peter J. Kolesar, 2004. "ANNIVERSARY ARTICLE: Improving Emergency Responsiveness with Management Science," Management Science, INFORMS, vol. 50(8), pages 1001-1014, August.
    7. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    8. Drent, Collin & Keizer, Minou Olde & Houtum, Geert-Jan van, 2020. "Dynamic dispatching and repositioning policies for fast-response service networks," European Journal of Operational Research, Elsevier, vol. 285(2), pages 583-598.
    9. Yoon, Soovin & Albert, Laura A., 2021. "Dynamic dispatch policies for emergency response with multiple types of vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    10. Phillip R. Jenkins & Matthew J. Robbins & Brian J. Lunday, 2021. "Approximate Dynamic Programming for Military Medical Evacuation Dispatching Policies," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 2-26, January.
    11. Phillip R. Jenkins & Matthew J. Robbins & Brian J. Lunday, 2018. "Examining military medical evacuation dispatching policies utilizing a Markov decision process model of a controlled queueing system," Annals of Operations Research, Springer, vol. 271(2), pages 641-678, December.
    12. Sunarin Chanta & Maria Mayorga & Laura McLay, 2014. "Improving emergency service in rural areas: a bi-objective covering location model for EMS systems," Annals of Operations Research, Springer, vol. 221(1), pages 133-159, October.
    13. Robbins, Matthew J. & Jenkins, Phillip R. & Bastian, Nathaniel D. & Lunday, Brian J., 2020. "Approximate dynamic programming for the aeromedical evacuation dispatching problem: Value function approximation utilizing multiple level aggregation," Omega, Elsevier, vol. 91(C).
    14. Thibault Gajdos & John Weymark & Claudio Zoli, 2010. "Shared destinies and the measurement of social risk equity," Annals of Operations Research, Springer, vol. 176(1), pages 409-424, April.
    15. Xiaojun Shan & Jun Zhuang, 2013. "Cost of Equity in Homeland Security Resource Allocation in the Face of a Strategic Attacker," Risk Analysis, John Wiley & Sons, vol. 33(6), pages 1083-1099, June.
    16. Amir Ali Nasrollahzadeh & Amin Khademi & Maria E. Mayorga, 2018. "Real-Time Ambulance Dispatching and Relocation," Manufacturing & Service Operations Management, INFORMS, vol. 20(3), pages 467-480, July.
    17. Bertsimas, Dimitris & Ng, Yeesian, 2019. "Robust and stochastic formulations for ambulance deployment and dispatch," European Journal of Operational Research, Elsevier, vol. 279(2), pages 557-571.
    18. Raisa B. Deber & Vivek Goel, 1990. "Using Explicit Decision Rules to Manage Issues of Justice, Risk, and Ethics in Decision Analysis," Medical Decision Making, , vol. 10(3), pages 181-194, August.
    19. Sengul Orgut, Irem & Freeman, Nickolas & Lewis, Dwight & Parton, Jason, 2023. "Equitable and effective vaccine access considering vaccine hesitancy and capacity constraints," Omega, Elsevier, vol. 120(C).
    20. Ibrahim Çapar & Sharif H Melouk & Burcu B Keskin, 2017. "Alternative metrics to measure EMS system performance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 792-808, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:15:y:2013:i:2:p:205-220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.