IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v61y2010i4d10.1057_jors.2008.163.html
   My bibliography  Save this article

Scheduling ambulance crews for maximum coverage

Author

Listed:
  • G Erdoğan

    (Ozyegin University)

  • E Erkut

    (Ozyegin University)

  • A Ingolfsson

    (University of Alberta)

  • G Laporte

    (HEC Montréal)

Abstract

This paper addresses the problem of scheduling ambulance crews in order to maximize the coverage throughout a planning horizon. The problem includes the subproblem of locating ambulances to maximize expected coverage with probabilistic response times, for which a tabu search algorithm is developed. The proposed tabu search algorithm is empirically shown to outperform previous approaches for this subproblem. Two integer programming models that use the output of the tabu search algorithm are constructed for the main problem. Computational experiments with real data are conducted. A comparison of the results of the models is presented.

Suggested Citation

  • G Erdoğan & E Erkut & A Ingolfsson & G Laporte, 2010. "Scheduling ambulance crews for maximum coverage," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 543-550, April.
  • Handle: RePEc:pal:jorsoc:v:61:y:2010:i:4:d:10.1057_jors.2008.163
    DOI: 10.1057/jors.2008.163
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2008.163
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2008.163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard C. Larson, 1975. "Approximating the Performance of Urban Emergency Service Systems," Operations Research, INFORMS, vol. 23(5), pages 845-868, October.
    2. Jeffrey Goldberg & Luis Paz, 1991. "Locating Emergency Vehicle Bases When Service Time Depends on Call Location," Transportation Science, INFORMS, vol. 25(4), pages 264-280, November.
    3. Ernst, A. T. & Jiang, H. & Krishnamoorthy, M. & Sier, D., 2004. "Staff scheduling and rostering: A review of applications, methods and models," European Journal of Operational Research, Elsevier, vol. 153(1), pages 3-27, February.
    4. Charles ReVelle & Kathleen Hogan, 1989. "The Maximum Availability Location Problem," Transportation Science, INFORMS, vol. 23(3), pages 192-200, August.
    5. Mark S. Daskin, 1983. "A Maximum Expected Covering Location Model: Formulation, Properties and Heuristic Solution," Transportation Science, INFORMS, vol. 17(1), pages 48-70, February.
    6. Linda V. Green & Peter J. Kolesar & João Soares, 2001. "Improving the Sipp Approach for Staffing Service Systems That Have Cyclic Demands," Operations Research, INFORMS, vol. 49(4), pages 549-564, August.
    7. Armann Ingolfsson & Susan Budge & Erhan Erkut, 2008. "Optimal ambulance location with random delays and travel times," Health Care Management Science, Springer, vol. 11(3), pages 262-274, September.
    8. Brotcorne, Luce & Laporte, Gilbert & Semet, Frederic, 2003. "Ambulance location and relocation models," European Journal of Operational Research, Elsevier, vol. 147(3), pages 451-463, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Detti, Paolo & Papalini, Francesco & Lara, Garazi Zabalo Manrique de, 2017. "A multi-depot dial-a-ride problem with heterogeneous vehicles and compatibility constraints in healthcare," Omega, Elsevier, vol. 70(C), pages 1-14.
    2. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    3. Najmaddin Akhundov & Nail Tahirov & Christoph H. Glock, 2022. "Optimal Scheduling of Waitstaff with Different Experience Levels at a Restaurant Chain," Interfaces, INFORMS, vol. 52(4), pages 324-343, July.
    4. Leknes, Håkon & Aartun, Eirik Skorge & Andersson, Henrik & Christiansen, Marielle & Granberg, Tobias Andersson, 2017. "Strategic ambulance location for heterogeneous regions," European Journal of Operational Research, Elsevier, vol. 260(1), pages 122-133.
    5. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    6. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    7. EunSu Lee & Melanie McDonald & Erin O’Neill & William Montgomery, 2021. "Statewide Ambulance Coverage of a Mixed Region of Urban, Rural and Frontier under Travel Time Catchment Areas," IJERPH, MDPI, vol. 18(5), pages 1-21, March.
    8. Laura A. McLay & Maria E. Mayorga, 2013. "A Dispatching Model for Server-to-Customer Systems That Balances Efficiency and Equity," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 205-220, May.
    9. Tristan Becker & Pia Mareike Steenweg & Brigitte Werners, 2019. "Cyclic shift scheduling with on-call duties for emergency medical services," Health Care Management Science, Springer, vol. 22(4), pages 676-690, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.
    2. Zvi Drezner & Vladimir Marianov & George O. Wesolowsky, 2016. "Maximizing the minimum cover probability by emergency facilities," Annals of Operations Research, Springer, vol. 246(1), pages 349-362, November.
    3. Armann Ingolfsson & Susan Budge & Erhan Erkut, 2008. "Optimal ambulance location with random delays and travel times," Health Care Management Science, Springer, vol. 11(3), pages 262-274, September.
    4. Rajagopalan, Hari K. & Saydam, Cem, 2009. "A minimum expected response model: Formulation, heuristic solution, and application," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 253-262, December.
    5. Sorensen, Paul & Church, Richard, 2010. "Integrating expected coverage and local reliability for emergency medical services location problems," Socio-Economic Planning Sciences, Elsevier, vol. 44(1), pages 8-18, March.
    6. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    7. Erhan Erkut & Armann Ingolfsson & Güneş Erdoğan, 2008. "Ambulance location for maximum survival," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(1), pages 42-58, February.
    8. Soovin Yoon & Laura A. Albert, 2018. "An expected coverage model with a cutoff priority queue," Health Care Management Science, Springer, vol. 21(4), pages 517-533, December.
    9. Wajid, Shayesta & Nezamuddin, N., 2023. "Capturing delays in response of emergency services in Delhi," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    10. Shariat-Mohaymany, Afshin & Babaei, Mohsen & Moadi, Saeed & Amiripour, Sayyed Mahdi, 2012. "Linear upper-bound unavailability set covering models for locating ambulances: Application to Tehran rural roads," European Journal of Operational Research, Elsevier, vol. 221(1), pages 263-272.
    11. Nilay Noyan, 2010. "Alternate risk measures for emergency medical service system design," Annals of Operations Research, Springer, vol. 181(1), pages 559-589, December.
    12. Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.
    13. McCormack, Richard & Coates, Graham, 2015. "A simulation model to enable the optimization of ambulance fleet allocation and base station location for increased patient survival," European Journal of Operational Research, Elsevier, vol. 247(1), pages 294-309.
    14. Sunarin Chanta & Maria Mayorga & Laura McLay, 2014. "Improving emergency service in rural areas: a bi-objective covering location model for EMS systems," Annals of Operations Research, Springer, vol. 221(1), pages 133-159, October.
    15. Sardar Ansari & Laura Albert McLay & Maria E. Mayorga, 2017. "A Maximum Expected Covering Problem for District Design," Transportation Science, INFORMS, vol. 51(1), pages 376-390, February.
    16. Leknes, Håkon & Aartun, Eirik Skorge & Andersson, Henrik & Christiansen, Marielle & Granberg, Tobias Andersson, 2017. "Strategic ambulance location for heterogeneous regions," European Journal of Operational Research, Elsevier, vol. 260(1), pages 122-133.
    17. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    18. Dirk Degel & Lara Wiesche & Sebastian Rachuba & Brigitte Werners, 2015. "Time-dependent ambulance allocation considering data-driven empirically required coverage," Health Care Management Science, Springer, vol. 18(4), pages 444-458, December.
    19. Kenneth C. Chong & Shane G. Henderson & Mark E. Lewis, 2016. "The Vehicle Mix Decision in Emergency Medical Service Systems," Manufacturing & Service Operations Management, INFORMS, vol. 18(3), pages 347-360, July.
    20. Soovin Yoon & Laura A. Albert & Veronica M. White, 2021. "A Stochastic Programming Approach for Locating and Dispatching Two Types of Ambulances," Transportation Science, INFORMS, vol. 55(2), pages 275-296, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:61:y:2010:i:4:d:10.1057_jors.2008.163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.