IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v65y2019i2p714-734.html
   My bibliography  Save this article

Strategic Commitment to a Production Schedule with Uncertain Supply and Demand: Renewable Energy in Day-Ahead Electricity Markets

Author

Listed:
  • Nur Sunar

    (Kenan-Flagler Business School, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599)

  • John R. Birge

    (University of Chicago Booth School of Business, Chicago, Illinois 60637)

Abstract

We consider a day-ahead electricity market that consists of multiple competing renewable firms (e.g., wind generators) and conventional firms (e.g., coal-fired power plants) in a discrete-time setting. The market is run in every period, and all firms submit their price-contingent production schedules in every day-ahead market. Following the clearance of a day-ahead market, in the next period, each (renewable) firm chooses its production quantity (after observing its available supply). If a firm produces less than its cleared day-ahead commitment, the firm pays an undersupply penalty in proportion to its underproduction. We explicitly characterize firms’ equilibrium strategies by introducing and analyzing a supply function competition model. The purpose of an undersupply penalty is to improve reliability by motivating each firm to commit to quantities it can produce in the following day. We prove that in equilibrium, imposing or increasing a market-based undersupply penalty rate in a period can result in a strictly larger renewable energy commitment at all prices in the associated day-ahead market, and can lead to lower equilibrium reliability in all periods with probability 1. We also show in an extension that firms with diversified technologies result in lower equilibrium reliability than single-technology firms in all periods with probability 1.

Suggested Citation

  • Nur Sunar & John R. Birge, 2019. "Strategic Commitment to a Production Schedule with Uncertain Supply and Demand: Renewable Energy in Day-Ahead Electricity Markets," Management Science, INFORMS, vol. 65(2), pages 714-734, February.
  • Handle: RePEc:inm:ormnsc:v:65:y:2019:i:2:p:714-734
    DOI: 10.1287/mnsc.2017.2961
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/mnsc.2017.2961
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2017.2961?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Majid Al-Gwaiz & Xiuli Chao & Owen Q. Wu, 2017. "Understanding How Generation Flexibility and Renewable Energy Affect Power Market Competition," Manufacturing & Service Operations Management, INFORMS, vol. 19(1), pages 114-131, February.
    2. Sioshansi, Fereidoon P., 2008. "Competitive Electricity Markets: Questions Remain about Design, Implementation, Performance," The Electricity Journal, Elsevier, vol. 21(2), pages 74-87, March.
    3. Xavier Vives, 2011. "Strategic Supply Function Competition With Private Information," Econometrica, Econometric Society, vol. 79(6), pages 1919-1966, November.
    4. Sam Aflaki & Serguei Netessine, 2017. "Strategic Investment in Renewable Energy Sources: The Effect of Supply Intermittency," Manufacturing & Service Operations Management, INFORMS, vol. 19(3), pages 489-507, July.
    5. E. J. Anderson & A. B. Philpott, 2002. "Using Supply Functions for Offering Generation into an Electricity Market," Operations Research, INFORMS, vol. 50(3), pages 477-489, June.
    6. Holmberg, Pär & Newbery, David, 2010. "The supply function equilibrium and its policy implications for wholesale electricity auctions," Utilities Policy, Elsevier, vol. 18(4), pages 209-226, December.
    7. Green, Richard J, 1996. "Increasing Competition in the British Electricity Spot Market," Journal of Industrial Economics, Wiley Blackwell, vol. 44(2), pages 205-216, June.
    8. Bolle, Friedel, 1992. "Supply function equilibria and the danger of tacit collusion : The case of spot markets for electricity," Energy Economics, Elsevier, vol. 14(2), pages 94-102, April.
    9. Shanshan Hu & Gilvan C. Souza & Mark E. Ferguson & Wenbin Wang, 2015. "Capacity Investment in Renewable Energy Technology with Supply Intermittency: Data Granularity Matters!," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 480-494, October.
    10. Holmberg, Par, 2008. "Unique supply function equilibrium with capacity constraints," Energy Economics, Elsevier, vol. 30(1), pages 148-172, January.
    11. Green, Richard J & Newbery, David M, 1992. "Competition in the British Electricity Spot Market," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 929-953, October.
    12. Ramesh Johari & John N. Tsitsiklis, 2011. "Parameterized Supply Function Bidding: Equilibrium and Efficiency," Operations Research, INFORMS, vol. 59(5), pages 1079-1089, October.
    13. Saed Alizamir & Francis de Véricourt & Peng Sun, 2016. "Efficient Feed-In-Tariff Policies for Renewable Energy Technologies," Operations Research, INFORMS, vol. 64(1), pages 52-66, February.
    14. Klemperer, Paul D & Meyer, Margaret A, 1989. "Supply Function Equilibria in Oligopoly under Uncertainty," Econometrica, Econometric Society, vol. 57(6), pages 1243-1277, November.
    15. Aleksandr Rudkevich & Max Duckworth & Richard Rosen, 1998. "Modeling Electricity Pricing in a Deregulated Generation Industry: The Potential for Oligopoly Pricing in a Poolco," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 19-48.
    16. Karthik Murali & Michael K. Lim & Nicholas C. Petruzzi, 2015. "Municipal Groundwater Management: Optimal Allocation and Control of a Renewable Natural Resource," Production and Operations Management, Production and Operations Management Society, vol. 24(9), pages 1453-1472, September.
    17. Owen Q. Wu & Roman Kapuscinski, 2013. "Curtailing Intermittent Generation in Electrical Systems," Manufacturing & Service Operations Management, INFORMS, vol. 15(4), pages 578-595, October.
    18. A. Gürhan Kök & Kevin Shang & Şafak Yücel, 2018. "Impact of Electricity Pricing Policies on Renewable Energy Investments and Carbon Emissions," Management Science, INFORMS, vol. 64(1), pages 131-148, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Xiaoling & Zhang, Huqing & Fan, Lurong & Zhang, Zhe & Peña-Mora, Feniosky, 2023. "Planning shared energy storage systems for the spatio-temporal coordination of multi-site renewable energy sources on the power generation side," Energy, Elsevier, vol. 282(C).
    2. Volodymyr Babich & Ruben Lobel & Şafak Yücel, 2020. "Promoting Solar Panel Investments: Feed-in-Tariff vs. Tax-Rebate Policies," Manufacturing & Service Operations Management, INFORMS, vol. 22(6), pages 1148-1164, November.
    3. Qiong Jia & Liyuan Wei & Xiaotong Li, 2019. "Visualizing Sustainability Research in Business and Management (1990–2019) and Emerging Topics: A Large-Scale Bibliometric Analysis," Sustainability, MDPI, vol. 11(20), pages 1-37, October.
    4. Karakoyun, Ece Cigdem & Avci, Harun & Kocaman, Ayse Selin & Nadar, Emre, 2023. "Deviations from commitments: Markov decision process formulations for the role of energy storage," International Journal of Production Economics, Elsevier, vol. 255(C).
    5. Karimi, Sajad & Kwon, Soongeol, 2022. "Optimization-driven uncertainty forecasting: Application to day-ahead commitment with renewable energy resources," Applied Energy, Elsevier, vol. 326(C).
    6. Heikki Peura & Derek W. Bunn, 2021. "Renewable Power and Electricity Prices: The Impact of Forward Markets," Management Science, INFORMS, vol. 67(8), pages 4772-4788, August.
    7. Nur Sunar & Jayashankar M. Swaminathan, 2021. "Net-Metered Distributed Renewable Energy: A Peril for Utilities?," Management Science, INFORMS, vol. 67(11), pages 6716-6733, November.
    8. Alessio Trivella & Danial Mohseni-Taheri & Selvaprabu Nadarajah, 2023. "Meeting Corporate Renewable Power Targets," Management Science, INFORMS, vol. 69(1), pages 491-512, January.
    9. Zhong, Zhiming & Fan, Neng & Wu, Lei, 2023. "A hybrid robust-stochastic optimization approach for day-ahead scheduling of cascaded hydroelectric system in restructured electricity market," European Journal of Operational Research, Elsevier, vol. 306(2), pages 909-926.
    10. Alexandar Angelus, 2021. "Distributed Renewable Power Generation and Implications for Capacity Investment and Electricity Prices," Production and Operations Management, Production and Operations Management Society, vol. 30(12), pages 4614-4634, December.
    11. Li, Bingkang & Zhao, Huiru & Wang, Xuejie & Zhao, Yihang & Zhang, Yuanyuan & Lu, Hao & Wang, Yuwei, 2022. "Distributionally robust offering strategy of the aggregator integrating renewable energy generator and energy storage considering uncertainty and connections between the mid-to-long-term and spot elec," Renewable Energy, Elsevier, vol. 201(P1), pages 400-417.
    12. Yuan Yuan & Feng Cai & Lingling Yang, 2020. "Renewable Energy Investment under Carbon Emission Regulations," Sustainability, MDPI, vol. 12(17), pages 1-15, August.
    13. Mier, Mathias, 2021. "Efficient pricing of electricity revisited," Energy Economics, Elsevier, vol. 104(C).
    14. Ge Zehui & Ren Zhengkun & Jia Yiheng & Hu Qiying, 2021. "A Bounded Commitment in Vertical Collaborations of New Product Development," Journal of Systems Science and Information, De Gruyter, vol. 9(2), pages 154-174, April.
    15. Ge, Zehui & Hu, Qiying & Goh, Chon-Huat & Zhao, Rui, 2021. "Action-dependent commitment in vertical collaborations: The effect of demand-creating innovations in a supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    16. Vishal V. Agrawal & Şafak Yücel, 2022. "Design of Electricity Demand-Response Programs," Management Science, INFORMS, vol. 68(10), pages 7441-7456, October.
    17. Nur Sunar & Jayashankar M. Swaminathan, 2022. "Socially relevant and inclusive operations management," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4379-4392, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nur Sunar & Jayashankar M. Swaminathan, 2021. "Net-Metered Distributed Renewable Energy: A Peril for Utilities?," Management Science, INFORMS, vol. 67(11), pages 6716-6733, November.
    2. Majid Al-Gwaiz & Xiuli Chao & Owen Q. Wu, 2017. "Understanding How Generation Flexibility and Renewable Energy Affect Power Market Competition," Manufacturing & Service Operations Management, INFORMS, vol. 19(1), pages 114-131, February.
    3. Pär Holmberg & Andy Philpott, 2014. "Supply function equilibria in transportation networks," Cambridge Working Papers in Economics 1421, Faculty of Economics, University of Cambridge.
    4. Pär Holmberg, 2017. "Pro‐competitive Rationing in Multi‐unit Auctions," Economic Journal, Royal Economic Society, vol. 127(605), pages 372-395, October.
    5. Holmberg, Pär & Philpott, Andrew, 2012. "Supply Function Equilibria in Networks with Transport Constraints," Working Paper Series 945, Research Institute of Industrial Economics, revised 10 Aug 2015.
    6. Anderson, Edward & Holmberg, Pär, 2018. "Price instability in multi-unit auctions," Journal of Economic Theory, Elsevier, vol. 175(C), pages 318-341.
    7. Holmberg, Pär, 2009. "Numerical calculation of an asymmetric supply function equilibrium with capacity constraints," European Journal of Operational Research, Elsevier, vol. 199(1), pages 285-295, November.
    8. Holmberg, P. & Philpott, A.B., 2018. "On supply-function equilibria in radial transmission networks," European Journal of Operational Research, Elsevier, vol. 271(3), pages 985-1000.
    9. Holmberg, Pär & Newbery, David & Ralph, Daniel, 2013. "Supply function equilibria: Step functions and continuous representations," Journal of Economic Theory, Elsevier, vol. 148(4), pages 1509-1551.
    10. Bolle, Friedel & Grimm, Veronika & Ockenfels, Axel & del Pozo, Xavier, 2013. "An experiment on supply function competition," European Economic Review, Elsevier, vol. 63(C), pages 170-185.
    11. Holmberg, Pär, 2005. "Comparing Supply Function Equilibria of Pay-as-Bid and Uniform-Price Auctions," Working Paper Series 2005:17, Uppsala University, Department of Economics.
    12. Pär Holmberg, 2009. "Supply function equilibria of pay-as-bid auctions," Journal of Regulatory Economics, Springer, vol. 36(2), pages 154-177, October.
    13. Holmberg, Pär & Newbery, David, 2010. "The supply function equilibrium and its policy implications for wholesale electricity auctions," Utilities Policy, Elsevier, vol. 18(4), pages 209-226, December.
    14. Fiuza de Bragança, Gabriel Godofredo & Daglish, Toby, 2016. "Can market power in the electricity spot market translate into market power in the hedge market?," Energy Economics, Elsevier, vol. 58(C), pages 11-26.
    15. Willems, Bert & Rumiantseva, Ina & Weigt, Hannes, 2009. "Cournot versus Supply Functions: What does the data tell us?," Energy Economics, Elsevier, vol. 31(1), pages 38-47, January.
    16. Ventosa, Mariano & Baillo, Alvaro & Ramos, Andres & Rivier, Michel, 2005. "Electricity market modeling trends," Energy Policy, Elsevier, vol. 33(7), pages 897-913, May.
    17. Holmberg, Pär, 2005. "Asymmetric Supply Function Equilibrium with Constant Marginal Costs," Working Paper Series 2005:16, Uppsala University, Department of Economics.
    18. E. J. Anderson & A. B. Philpott, 2002. "Using Supply Functions for Offering Generation into an Electricity Market," Operations Research, INFORMS, vol. 50(3), pages 477-489, June.
    19. Marc Escrihuela‐Villar & Carlos Gutiérrez‐Hita & José Vicente‐Pérez, 2020. "Supply function competition in a mixed electric power market," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 22(4), pages 1151-1175, August.
    20. Albert Banal-Estañol & Augusto Rupérez Micola, 2009. "Composition of Electricity Generation Portfolios, Pivotal Dynamics, and Market Prices," Management Science, INFORMS, vol. 55(11), pages 1813-1831, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:65:y:2019:i:2:p:714-734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.