IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v30y2021i12p4614-4634.html
   My bibliography  Save this article

Distributed Renewable Power Generation and Implications for Capacity Investment and Electricity Prices

Author

Listed:
  • Alexandar Angelus

Abstract

Renewable energy generation at the point of consumption (i.e., distributed generation) reduces consumer's electricity expenditure, and eliminates the cost, complexity, and inefficiency associated with power transmission and distribution. In this study, we address the problem of how a consumer should invest in distributed renewable generation to minimize the total expected cost of meeting his electricity demand. In contrast to the existing literature that focuses on grid‐connected, large‐scale investments in renewable power generation in the wholesale electricity market, we address investment in stand‐alone, distributed renewable energy by an individual consumer who participates in a regulated, retail electricity market. We formulate an infinite‐horizon, continuous‐time model in which the utility moves first, and announces a retail electricity rate. Each consumer then acts strategically in deciding if, when, and how much distributed generation capacity to install. We find the subgame‐perfect Nash equilibrium of this dynamic Stackelberg game by first deriving the consumer's optimal investment time and the resulting optimal capacity of his installed distributed generation. Using those results, we quantify the ensuing cost savings to the consumer, which average over 22% across a range of model parameters. Next, we evaluate the impact of consumer's investment in renewable energy on the revenue of his electric utility, and arrive at the structure of the pricing policy that maximizes that revenue. We quantify the revenue increase available to the utility from following this revenue‐maximizing pricing when serving either a single consumer or multiple heterogeneous consumers, and find that it averages over 10% in our numerical studies.

Suggested Citation

  • Alexandar Angelus, 2021. "Distributed Renewable Power Generation and Implications for Capacity Investment and Electricity Prices," Production and Operations Management, Production and Operations Management Society, vol. 30(12), pages 4614-4634, December.
  • Handle: RePEc:bla:popmgt:v:30:y:2021:i:12:p:4614-4634
    DOI: 10.1111/poms.13241
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13241
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13241?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Majid Al-Gwaiz & Xiuli Chao & Owen Q. Wu, 2017. "Understanding How Generation Flexibility and Renewable Energy Affect Power Market Competition," Manufacturing & Service Operations Management, INFORMS, vol. 19(1), pages 114-131, February.
    2. Dangl, Thomas, 1999. "Investment and capacity choice under uncertain demand," European Journal of Operational Research, Elsevier, vol. 117(3), pages 415-428, September.
    3. Owen Q. Wu & Derek D. Wang & Zhenwei Qin, 2012. "Seasonal Energy Storage Operations with Limited Flexibility: The Price-Adjusted Rolling Intrinsic Policy," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 455-471, July.
    4. Sam Aflaki & Serguei Netessine, 2017. "Strategic Investment in Renewable Energy Sources: The Effect of Supply Intermittency," Manufacturing & Service Operations Management, INFORMS, vol. 19(3), pages 489-507, July.
    5. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    6. H. Dharma Kwon & Wenxin Xu & Anupam Agrawal & Suresh Muthulingam, 2016. "Impact of Bayesian Learning and Externalities on Strategic Investment," Management Science, INFORMS, vol. 62(2), pages 550-570, February.
    7. Alexandar Angelus & Evan L. Porteus, 2002. "Simultaneous Capacity and Production Management of Short-Life-Cycle, Produce-to-Stock Goods Under Stochastic Demand," Management Science, INFORMS, vol. 48(3), pages 399-413, March.
    8. Geoffrey G. Parker & Burcu Tan & Osman Kazan, 2019. "Electric Power Industry: Operational and Public Policy Challenges and Opportunities," Production and Operations Management, Production and Operations Management Society, vol. 28(11), pages 2738-2777, November.
    9. Wenbin Wang & Mark E. Ferguson & Shanshan Hu & Gilvan C. Souza, 2013. "Dynamic Capacity Investment with Two Competing Technologies," Manufacturing & Service Operations Management, INFORMS, vol. 15(4), pages 616-629, October.
    10. Eric L. Prentis, 2015. "Evidence on U.S. Electricity Prices: Regulated Utility vs. Restructured States," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 253-262.
    11. Tatyana Deryugina & Alexander MacKay & Julian Reif, 2020. "The Long-Run Dynamics of Electricity Demand: Evidence from Municipal Aggregation," American Economic Journal: Applied Economics, American Economic Association, vol. 12(1), pages 86-114, January.
    12. Keswani, Aneel & Shackleton, Mark B., 2006. "How real option disinvestment flexibility augments project NPV," European Journal of Operational Research, Elsevier, vol. 168(1), pages 240-252, January.
    13. Matt Thompson & Matt Davison & Henning Rasmussen, 2004. "Valuation and Optimal Operation of Electric Power Plants in Competitive Markets," Operations Research, INFORMS, vol. 52(4), pages 546-562, August.
    14. Yangfang (Helen) Zhou & Alan Scheller-Wolf & Nicola Secomandi & Stephen Smith, 2016. "Electricity Trading and Negative Prices: Storage vs. Disposal," Management Science, INFORMS, vol. 62(3), pages 880-898, March.
    15. Shanshan Hu & Gilvan C. Souza & Mark E. Ferguson & Wenbin Wang, 2015. "Capacity Investment in Renewable Energy Technology with Supply Intermittency: Data Granularity Matters!," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 480-494, October.
    16. Jan A. Van Mieghem, 2003. "Commissioned Paper: Capacity Management, Investment, and Hedging: Review and Recent Developments," Manufacturing & Service Operations Management, INFORMS, vol. 5(4), pages 269-302, July.
    17. Gérard P. Cachon & Martin A. Lariviere, 1999. "Capacity Choice and Allocation: Strategic Behavior and Supply Chain Performance," Management Science, INFORMS, vol. 45(8), pages 1091-1108, August.
    18. H. Dharma Kwon, 2010. "Invest or Exit? Optimal Decisions in the Face of a Declining Profit Stream," Operations Research, INFORMS, vol. 58(3), pages 638-649, June.
    19. Owen Q. Wu & Roman Kapuscinski, 2013. "Curtailing Intermittent Generation in Electrical Systems," Manufacturing & Service Operations Management, INFORMS, vol. 15(4), pages 578-595, October.
    20. Chung-Li Tseng & Graydon Barz, 2002. "Short-Term Generation Asset Valuation: A Real Options Approach," Operations Research, INFORMS, vol. 50(2), pages 297-310, April.
    21. Nur Sunar & John R. Birge, 2019. "Strategic Commitment to a Production Schedule with Uncertain Supply and Demand: Renewable Energy in Day-Ahead Electricity Markets," Management Science, INFORMS, vol. 65(2), pages 714-734, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nur Sunar & Jayashankar M. Swaminathan, 2022. "Socially relevant and inclusive operations management," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4379-4392, December.
    2. Nicola Secomandi & Sridhar Seshadri, 2021. "Introduction to the Focused Issue on the POM‐Finance Interface in Commodity and Energy Markets," Production and Operations Management, Production and Operations Management Society, vol. 30(12), pages 4566-4567, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Gürhan Kök & Kevin Shang & Şafak Yücel, 2018. "Impact of Electricity Pricing Policies on Renewable Energy Investments and Carbon Emissions," Management Science, INFORMS, vol. 64(1), pages 131-148, January.
    2. Nur Sunar & Jayashankar M. Swaminathan, 2022. "Socially relevant and inclusive operations management," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4379-4392, December.
    3. Yangfang (Helen) Zhou & Alan Scheller‐Wolf & Nicola Secomandi & Stephen Smith, 2019. "Managing Wind‐Based Electricity Generation in the Presence of Storage and Transmission Capacity," Production and Operations Management, Production and Operations Management Society, vol. 28(4), pages 970-989, April.
    4. Alessio Trivella & Danial Mohseni-Taheri & Selvaprabu Nadarajah, 2023. "Meeting Corporate Renewable Power Targets," Management Science, INFORMS, vol. 69(1), pages 491-512, January.
    5. Nur Sunar & Jayashankar M. Swaminathan, 2021. "Net-Metered Distributed Renewable Energy: A Peril for Utilities?," Management Science, INFORMS, vol. 67(11), pages 6716-6733, November.
    6. Anna Maria Gambaro & Nicola Secomandi, 2021. "A Discussion of Non‐Gaussian Price Processes for Energy and Commodity Operations," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 47-67, January.
    7. Alain Bensoussan & Benoit Chevalier-Roignant & Alejandro Rivera, 2022. "A model for wind farm management with option interactions," Post-Print hal-04325553, HAL.
    8. Nadarajah, Selvaprabu & Secomandi, Nicola, 2023. "A review of the operations literature on real options in energy," European Journal of Operational Research, Elsevier, vol. 309(2), pages 469-487.
    9. Atalay Atasu & Charles J. Corbett & Ximin (Natalie) Huang & L. Beril Toktay, 2020. "Sustainable Operations Management Through the Perspective of Manufacturing & Service Operations Management," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 146-157, January.
    10. Volodymyr Babich & Ruben Lobel & Şafak Yücel, 2020. "Promoting Solar Panel Investments: Feed-in-Tariff vs. Tax-Rebate Policies," Manufacturing & Service Operations Management, INFORMS, vol. 22(6), pages 1148-1164, November.
    11. Nur Sunar & John R. Birge, 2019. "Strategic Commitment to a Production Schedule with Uncertain Supply and Demand: Renewable Energy in Day-Ahead Electricity Markets," Management Science, INFORMS, vol. 65(2), pages 714-734, February.
    12. Panos Kouvelis & Hirofumi Matsuo & Yixuan Xiao & Quan Yuan, 2023. "Long‐term service agreement in electricity supply chain with renewable energy penetration," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1830-1845, June.
    13. Heikki Peura & Derek W. Bunn, 2021. "Renewable Power and Electricity Prices: The Impact of Forward Markets," Management Science, INFORMS, vol. 67(8), pages 4772-4788, August.
    14. Yuan Yuan & Feng Cai & Lingling Yang, 2020. "Renewable Energy Investment under Carbon Emission Regulations," Sustainability, MDPI, vol. 12(17), pages 1-15, August.
    15. Ekaterina Abramova & Derek Bunn, 2021. "Optimal Daily Trading of Battery Operations Using Arbitrage Spreads," Energies, MDPI, vol. 14(16), pages 1-23, August.
    16. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    17. Alain Bensoussan & Benoît Chevalier‐Roignant & Alejandro Rivera, 2022. "A model for wind farm management with option interactions," Production and Operations Management, Production and Operations Management Society, vol. 31(7), pages 2853-2871, July.
    18. Takashima, Ryuta & Goto, Makoto & Kimura, Hiroshi & Madarame, Haruki, 2008. "Entry into the electricity market: Uncertainty, competition, and mothballing options," Energy Economics, Elsevier, vol. 30(4), pages 1809-1830, July.
    19. Qin, Ruwen & Nembhard, David A., 2012. "Demand modeling of stochastic product diffusion over the life cycle," International Journal of Production Economics, Elsevier, vol. 137(2), pages 201-210.
    20. Aditya Vedantam & Ananth Iyer, 2021. "Capacity Investment under Bayesian Information Updates at Reporting Periods: Model and Application," Production and Operations Management, Production and Operations Management Society, vol. 30(8), pages 2707-2725, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:30:y:2021:i:12:p:4614-4634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.