IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v44y2014i2p222-240.html
   My bibliography  Save this article

Medium-Term Rail Scheduling for an Iron Ore Mining Company

Author

Listed:
  • Gaurav Singh

    (CSIRO Mathematics, Informatics and Statistics, Clayton, Victoria 3168, Australia)

  • Rodolfo García-Flores

    (CSIRO Mathematics, Informatics and Statistics, Clayton, Victoria 3168, Australia)

  • Andreas Ernst

    (CSIRO Mathematics, Informatics and Statistics, Clayton, Victoria 3168, Australia)

  • Palitha Welgama

    (Rio Tinto Iron Ore, Operations Center, Perth Domestic Airport, Western Australia 6105, Australia)

  • Meimei Zhang

    (Rio Tinto Iron Ore, Operations Center, Perth Domestic Airport, Western Australia 6105, Australia)

  • Kerry Munday

    (Rio Tinto Iron Ore, Operations Center, Perth Domestic Airport, Western Australia 6105, Australia)

Abstract

In mineral supply chains, medium-term plans are made for scheduling crews, production, and maintenance. These plans must respect constraints associated with loading and unloading, stockyard capacities, fleet capacities, and maintenance and production requirements. Additionally, compliance with grade quality depends on blending minerals from different sources. In this paper, we present an optimization tool developed for a major multinational iron ore mining company to manage the operations of its supply network in the Pilbara region of Western Australia. The tool produces plans for time horizons from a few weeks to two years, while addressing the nonlinearities that blending introduces. The plans our tool produces allow the company to ship a higher amount of iron ore than it did when it followed the plans obtained by its former manual approach. The company’s planners now rely solely on our tool because it has enabled them to schedule up to one million additional tonnes of material per annum and has reduced the planning time from five hours to less than one hour.

Suggested Citation

  • Gaurav Singh & Rodolfo García-Flores & Andreas Ernst & Palitha Welgama & Meimei Zhang & Kerry Munday, 2014. "Medium-Term Rail Scheduling for an Iron Ore Mining Company," Interfaces, INFORMS, vol. 44(2), pages 222-240, April.
  • Handle: RePEc:inm:orinte:v:44:y:2014:i:2:p:222-240
    DOI: 10.1287/inte.1120.0669
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.1120.0669
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.1120.0669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jean-François Cordeau & Paolo Toth & Daniele Vigo, 1998. "A Survey of Optimization Models for Train Routing and Scheduling," Transportation Science, INFORMS, vol. 32(4), pages 380-404, November.
    2. Charles Audet & Jack Brimberg & Pierre Hansen & Sébastien Le Digabel & Nenad Mladenovi'{c}, 2004. "Pooling Problem: Alternate Formulations and Solution Methods," Management Science, INFORMS, vol. 50(6), pages 761-776, June.
    3. Bilgen, Bilge & Ozkarahan, Irem, 2007. "A mixed-integer linear programming model for bulk grain blending and shipping," International Journal of Production Economics, Elsevier, vol. 107(2), pages 555-571, June.
    4. Everett, J. E., 2001. "Iron ore production scheduling to improve product quality," European Journal of Operational Research, Elsevier, vol. 129(2), pages 355-361, March.
    5. M Kumral, 2011. "Incorporating geo-metallurgical information into mine production scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 60-68, January.
    6. Liu, Chiun-Ming & Sherali, Hanif D., 2000. "A coal shipping and blending problem for an electric utility company," Omega, Elsevier, vol. 28(4), pages 433-444, August.
    7. Kuo, April & Miller-Hooks, Elise & Mahmassani, Hani S., 2010. "Freight train scheduling with elastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 1057-1070, November.
    8. Stelios H. Zanakis & James R. Evans, 1981. "Heuristic “Optimization”: Why, When, and How to Use It," Interfaces, INFORMS, vol. 11(5), pages 84-91, October.
    9. Ulstein, Nina Linn & Nygreen, Bjorn & Sagli, Jan Richard, 2007. "Tactical planning of offshore petroleum production," European Journal of Operational Research, Elsevier, vol. 176(1), pages 550-564, January.
    10. Macharis, C. & Bontekoning, Y. M., 2004. "Opportunities for OR in intermodal freight transport research: A review," European Journal of Operational Research, Elsevier, vol. 153(2), pages 400-416, March.
    11. Shih, Li-Hsing, 1997. "Planning of fuel coal imports using a mixed integer programming method," International Journal of Production Economics, Elsevier, vol. 51(3), pages 243-249, September.
    12. Fröhling, Magnus & Schwaderer, Frank & Bartusch, Hauke & Rentz, Otto, 2010. "Integrated planning of transportation and recycling for multiple plants based on process simulation," European Journal of Operational Research, Elsevier, vol. 207(2), pages 958-970, December.
    13. Everett, J.E., 2007. "Computer aids for production systems management in iron ore mining," International Journal of Production Economics, Elsevier, vol. 110(1-2), pages 213-223, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    2. Michelle L. Blom & Christina N. Burt & Adrian R. Pearce & Peter J. Stuckey, 2014. "A Decomposition-Based Heuristic for Collaborative Scheduling in a Network of Open-Pit Mines," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 658-676, November.
    3. LaRoche-Boisvert, Mélanie & Dimitrakopoulos, Roussos & Ferland, Jacques A., 2021. "Simultaneous production scheduling and transportation optimization from mines to port under uncertain material supply," Resources Policy, Elsevier, vol. 73(C).
    4. Lu Chen & Qinghua Gu & Rui Wang & Zhidong Feng & Chao Zhang, 2022. "Comprehensive Utilization of Mineral Resources: Optimal Blending of Polymetallic Ore Using an Improved NSGA-III Algorithm," Sustainability, MDPI, vol. 14(17), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Djeumou Fomeni, Franklin, 2018. "A multi-objective optimization approach for the blending problem in the tea industry," International Journal of Production Economics, Elsevier, vol. 205(C), pages 179-192.
    2. Arigoni, Ashley & Newman, Alexandra & Turner, Cameron & Kaptur, Casey, 2017. "Optimizing global thermal coal shipments," Omega, Elsevier, vol. 72(C), pages 118-127.
    3. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    4. Yang, Xin & Chen, Anthony & Ning, Bin & Tang, Tao, 2017. "Bi-objective programming approach for solving the metro timetable optimization problem with dwell time uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 22-37.
    5. Bilgen, Bilge & Ozkarahan, Irem, 2007. "A mixed-integer linear programming model for bulk grain blending and shipping," International Journal of Production Economics, Elsevier, vol. 107(2), pages 555-571, June.
    6. Benhamou, Latifa & Giard, Vincent & Khouloud, Mehdi & Fenies, Pierres & Fontane, Frédéric, 2020. "Reverse Blending: An economically efficient approach to the challenge of fertilizer mass customization," International Journal of Production Economics, Elsevier, vol. 226(C).
    7. Bilegan, Ioana C. & Crainic, Teodor Gabriel & Wang, Yunfei, 2022. "Scheduled service network design with revenue management considerations and an intermodal barge transportation illustration," European Journal of Operational Research, Elsevier, vol. 300(1), pages 164-177.
    8. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    9. Verma, Manish & Verter, Vedat, 2010. "A lead-time based approach for planning rail-truck intermodal transportation of dangerous goods," European Journal of Operational Research, Elsevier, vol. 202(3), pages 696-706, May.
    10. Baskoro, Firly Rachmaditya & Takahashi, Katsuhiko & Morikawa, Katsumi & Nagasawa, Keisuke, 2022. "Multi-objective optimization on total cost and carbon dioxide emission of coal supply for coal-fired power plants in Indonesia," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    11. Andersen, Jardar & Crainic, Teodor Gabriel & Christiansen, Marielle, 2009. "Service network design with management and coordination of multiple fleets," European Journal of Operational Research, Elsevier, vol. 193(2), pages 377-389, March.
    12. Michelle L. Blom & Christina N. Burt & Adrian R. Pearce & Peter J. Stuckey, 2014. "A Decomposition-Based Heuristic for Collaborative Scheduling in a Network of Open-Pit Mines," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 658-676, November.
    13. Nils Boysen & Malte Fliedner & Florian Jaehn & Erwin Pesch, 2013. "A Survey on Container Processing in Railway Yards," Transportation Science, INFORMS, vol. 47(3), pages 312-329, August.
    14. Bach, Lukas & Gendreau, Michel & Wøhlk, Sanne, 2015. "Freight railway operator timetabling and engine scheduling," European Journal of Operational Research, Elsevier, vol. 241(2), pages 309-319.
    15. Chang, Jiyoun C. & Graves, Stephen C. & Kirchain, Randolph E. & Olivetti, Elsa A., 2019. "Integrated planning for design and production in two-stage recycling operations," European Journal of Operational Research, Elsevier, vol. 273(2), pages 535-547.
    16. Lars Hellemo & Asgeir Tomasgard, 2016. "A generalized global optimization formulation of the pooling problem with processing facilities and composite quality constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 409-444, July.
    17. Nils Boysen & Florian Jaehn & Erwin Pesch, 2011. "Scheduling Freight Trains in Rail-Rail Transshipment Yards," Transportation Science, INFORMS, vol. 45(2), pages 199-211, May.
    18. Boysen, Nils & Fliedner, Malte & Jaehn, Florian & Pesch, Erwin, 2012. "Shunting yard operations: Theoretical aspects and applications," European Journal of Operational Research, Elsevier, vol. 220(1), pages 1-14.
    19. Jiahao Zhao & Xiaoning Zhu & Li Wang, 2020. "Study on Scheme of Outbound Railway Container Organization in Rail-Water Intermodal Transportation," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    20. Boysen, Nils & Fliedner, Malte, 2010. "Determining crane areas in intermodal transshipment yards: The yard partition problem," European Journal of Operational Research, Elsevier, vol. 204(2), pages 336-342, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:44:y:2014:i:2:p:222-240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.