IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10766-d901100.html
   My bibliography  Save this article

Comprehensive Utilization of Mineral Resources: Optimal Blending of Polymetallic Ore Using an Improved NSGA-III Algorithm

Author

Listed:
  • Lu Chen

    (School of Management, Xi’an University of Architecture and Technology, Xi’an 710055, China
    Xi’an Key Laboratory for Intelligent Industrial Perception, Calculation and Decision, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Qinghua Gu

    (Xi’an Key Laboratory for Intelligent Industrial Perception, Calculation and Decision, Xi’an University of Architecture and Technology, Xi’an 710055, China
    School of Resources Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Rui Wang

    (School of Management, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Zhidong Feng

    (Xi’an Key Laboratory for Intelligent Industrial Perception, Calculation and Decision, Xi’an University of Architecture and Technology, Xi’an 710055, China
    School of Resources Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Chao Zhang

    (China Molybdenum Co., Ltd. (China), Luoyang 417500, China)

Abstract

A serious problem faced by the metal mineral mining industry is the challenge to the sustainable development of resource mining due to the continuous decline of ore geological grade. In the case of producing concentrates of the same quality, compared with using only high-grade raw ore, ore blending is a way to slow down the decline of ore geological grade by combining high- and low-grade raw ore. There are many ore blending models considering cost minimization or profit maximization as the target value, ignoring the fact that ore blending is intended to obtain a homogenized product. Moreover, the ore blending model cannot be solved by traditional operational research methods when blended grade stability of multiple elements is considered in the ore blending program. In this paper, a multi-objective ore blending optimization model is constructed for the comprehensive utilization of associated resources in ores. It minimizes the deviation of the grade of each metallic element in the blended associated ore from the beneficiation grade and the percentage of different types of rocks at the unloading point. To solve this multi-objective optimization model, an intelligent optimization method is proposed that is an improved multi-objective optimization algorithm based on the Non-dominated Sorting Genetic Algorithm III (NSGA-III). The case study shows that the proposed model and algorithm can effectively solve the mixing problem of polymetallic ores and obtain a satisfactory ore blending solution.

Suggested Citation

  • Lu Chen & Qinghua Gu & Rui Wang & Zhidong Feng & Chao Zhang, 2022. "Comprehensive Utilization of Mineral Resources: Optimal Blending of Polymetallic Ore Using an Improved NSGA-III Algorithm," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10766-:d:901100
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10766/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10766/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michelle L. Blom & Adrian R. Pearce & Peter J. Stuckey, 2016. "A Decomposition-Based Algorithm for the Scheduling of Open-Pit Networks Over Multiple Time Periods," Management Science, INFORMS, vol. 62(10), pages 3059-3084, October.
    2. Moreno, Eduardo & Rezakhah, Mojtaba & Newman, Alexandra & Ferreira, Felipe, 2017. "Linear models for stockpiling in open-pit mine production scheduling problems," European Journal of Operational Research, Elsevier, vol. 260(1), pages 212-221.
    3. Gaurav Singh & Rodolfo García-Flores & Andreas Ernst & Palitha Welgama & Meimei Zhang & Kerry Munday, 2014. "Medium-Term Rail Scheduling for an Iron Ore Mining Company," Interfaces, INFORMS, vol. 44(2), pages 222-240, April.
    4. Sotoudeh, Farzad & Nehring, Micah & Kizil, Mehmet & Knights, Peter & Mousavi, Amin, 2020. "Production scheduling optimisation for sublevel stoping mines using mathematical programming: A review of literature and future directions," Resources Policy, Elsevier, vol. 68(C).
    5. Danish, Abid Ali Khan & Khan, Asif & Muhammad, Khan & Ahmad, Waqas & Salman, Saad, 2021. "A simulated annealing based approach for open pit mine production scheduling with stockpiling option," Resources Policy, Elsevier, vol. 71(C).
    6. Michelle L. Blom & Christina N. Burt & Adrian R. Pearce & Peter J. Stuckey, 2014. "A Decomposition-Based Heuristic for Collaborative Scheduling in a Network of Open-Pit Mines," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 658-676, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang Yao & Zhiqiang Wang & Hongbin Chen & Weigang Hou & Xiaomiao Zhang & Xu Li & Weixing Yuan, 2023. "Open-Pit Mine Truck Dispatching System Based on Dynamic Ore Blending Decisions," Sustainability, MDPI, vol. 15(4), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    2. Haonan, Zhou & Samavati, Mehran & Hill, Andrew J., 2021. "Heuristics for integrated blending optimisation in a mining supply chain," Omega, Elsevier, vol. 102(C).
    3. Zhang, Jian & Nault, Barrie R. & Dimitrakopoulos, Roussos G., 2019. "Optimizing a mineral value chain with market uncertainty using benders decomposition," European Journal of Operational Research, Elsevier, vol. 274(1), pages 227-239.
    4. Yifu Chen & Christos T. Maravelias, 2020. "Preprocessing algorithm and tightening constraints for multiperiod blend scheduling: cost minimization," Journal of Global Optimization, Springer, vol. 77(3), pages 603-625, July.
    5. Yifu Chen & Christos T. Maravelias, 2022. "Variable Bound Tightening and Valid Constraints for Multiperiod Blending," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2073-2090, July.
    6. Biswas, Pritam & Sinha, Rabindra Kumar & Sen, Phalguni, 2023. "A review of state-of-the-art techniques for the determination of the optimum cut-off grade of a metalliferous deposit with a bibliometric mapping in a surface mine planning context," Resources Policy, Elsevier, vol. 83(C).
    7. Pérez, Juan & Maldonado, Sebastián & González-Ramírez, Rosa, 2018. "Decision support for fleet allocation and contract renegotiation in contracted open-pit mine blasting operations," International Journal of Production Economics, Elsevier, vol. 204(C), pages 59-69.
    8. Zhang, Zhimin & Elshkaki, Ayman, 2022. "An analysis of the supply-side factors of geological exploration in China based on provincial panel data between 1999 and 2017," Resources Policy, Elsevier, vol. 76(C).
    9. Noriega, Roberto & Pourrahimian, Yashar, 2022. "A systematic review of artificial intelligence and data-driven approaches in strategic open-pit mine planning," Resources Policy, Elsevier, vol. 77(C).
    10. Cinna Seifi & Marco Schulze & Jürgen Zimmermann, 2021. "Solution procedures for block selection and sequencing in flat-bedded potash underground mines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 409-440, June.
    11. Furtado e Faria, Matheus & Dimitrakopoulos, Roussos & Lopes Pinto, Cláudio Lúcio, 2022. "Integrated stochastic optimization of stope design and long-term underground mine production scheduling," Resources Policy, Elsevier, vol. 78(C).
    12. Jiang Yao & Zhiqiang Wang & Hongbin Chen & Weigang Hou & Xiaomiao Zhang & Xu Li & Weixing Yuan, 2023. "Open-Pit Mine Truck Dispatching System Based on Dynamic Ore Blending Decisions," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
    13. Chimunhu, Prosper & Topal, Erkan & Ajak, Ajak Duany & Asad, Waqar, 2022. "A review of machine learning applications for underground mine planning and scheduling," Resources Policy, Elsevier, vol. 77(C).
    14. César Flores-Fonseca & Rodrigo Linfati & John Willmer Escobar, 2022. "Exact algorithms for production planning in mining considering the use of stockpiles and sequencing of power shovels in open-pit mines," Operational Research, Springer, vol. 22(3), pages 2529-2553, July.
    15. Tabesh, Mohammad & Moradi Afrapoli, Ali & Askari-Nasab, Hooman, 2023. "A two-stage simultaneous optimization of NPV and throughput in production planning of open pit mines," Resources Policy, Elsevier, vol. 80(C).
    16. Michelle L. Blom & Christina N. Burt & Adrian R. Pearce & Peter J. Stuckey, 2014. "A Decomposition-Based Heuristic for Collaborative Scheduling in a Network of Open-Pit Mines," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 658-676, November.
    17. Guo, Hongquan & Nguyen, Hoang & Vu, Diep-Anh & Bui, Xuan-Nam, 2021. "Forecasting mining capital cost for open-pit mining projects based on artificial neural network approach," Resources Policy, Elsevier, vol. 74(C).
    18. Mauricio Varas & Franco Basso & Armin Lüer-Villagra & Alejandro Mac Cawley & Sergio Maturana, 2019. "Managing premium wines using an $$(s - 1,s)$$ ( s - 1 , s ) inventory policy: a heuristic solution approach," Annals of Operations Research, Springer, vol. 280(1), pages 351-376, September.
    19. LaRoche-Boisvert, Mélanie & Dimitrakopoulos, Roussos & Ferland, Jacques A., 2021. "Simultaneous production scheduling and transportation optimization from mines to port under uncertain material supply," Resources Policy, Elsevier, vol. 73(C).
    20. Nelis, Gonzalo & Morales, Nelson & Jelvez, Enrique, 2023. "Optimal mining cut definition and short-term open pit production scheduling under geological uncertainty," Resources Policy, Elsevier, vol. 81(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10766-:d:901100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.