IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v260y2017i1p212-221.html
   My bibliography  Save this article

Linear models for stockpiling in open-pit mine production scheduling problems

Author

Listed:
  • Moreno, Eduardo
  • Rezakhah, Mojtaba
  • Newman, Alexandra
  • Ferreira, Felipe

Abstract

The open pit mine production scheduling (OPMPS) problem seeks to determine when, if ever, to extract each notional, three-dimensional block of ore and/or waste in a deposit and what to do with each, e.g., send it to a particular processing plant or to the waste dump. This scheduling model maximizes net present value subject to spatial precedence constraints, and resource capacities. Certain mines use stockpiles for blending different grades of extracted material, storing excess until processing capacity is available, or keeping low-grade ore for possible future processing. Common models assume that material in these stockpiles, or “buckets,” is theoretically immediately mixed and becomes homogeneous.

Suggested Citation

  • Moreno, Eduardo & Rezakhah, Mojtaba & Newman, Alexandra & Ferreira, Felipe, 2017. "Linear models for stockpiling in open-pit mine production scheduling problems," European Journal of Operational Research, Elsevier, vol. 260(1), pages 212-221.
  • Handle: RePEc:eee:ejores:v:260:y:2017:i:1:p:212-221
    DOI: 10.1016/j.ejor.2016.12.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716310335
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.12.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martinez, Michael A. & Newman, Alexandra M., 2011. "A solution approach for optimizing long- and short-term production scheduling at LKAB's Kiruna mine," European Journal of Operational Research, Elsevier, vol. 211(1), pages 184-197, May.
    2. Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Alexandra Newman, 2013. "MineLib: a library of open pit mining problems," Annals of Operations Research, Springer, vol. 206(1), pages 93-114, July.
    3. Montiel, Luis & Dimitrakopoulos, Roussos, 2015. "Optimizing mining complexes with multiple processing and transportation alternatives: An uncertainty-based approach," European Journal of Operational Research, Elsevier, vol. 247(1), pages 166-178.
    4. Shishvan, Masoud Soleymani & Sattarvand, Javad, 2015. "Long term production planning of open pit mines by ant colony optimization," European Journal of Operational Research, Elsevier, vol. 240(3), pages 825-836.
    5. O’Sullivan, Dónal & Newman, Alexandra, 2015. "Optimization-based heuristics for underground mine scheduling," European Journal of Operational Research, Elsevier, vol. 241(1), pages 248-259.
    6. Renaud Chicoisne & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Enrique Rubio, 2012. "A New Algorithm for the Open-Pit Mine Production Scheduling Problem," Operations Research, INFORMS, vol. 60(3), pages 517-528, June.
    7. Lamghari, Amina & Dimitrakopoulos, Roussos, 2016. "Network-flow based algorithms for scheduling production in multi-processor open-pit mines accounting for metal uncertainty," European Journal of Operational Research, Elsevier, vol. 250(1), pages 273-290.
    8. Martin L. Smith & Stewart J. Wicks, 2014. "Medium-Term Production Scheduling of the Lumwana Mining Complex," Interfaces, INFORMS, vol. 44(2), pages 176-194, April.
    9. Jélvez, Enrique & Morales, Nelson & Nancel-Penard, Pierre & Peypouquet, Juan & Reyes, Patricio, 2016. "Aggregation heuristic for the open-pit block scheduling problem," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1169-1177.
    10. Ramazan, Salih, 2007. "The new Fundamental Tree Algorithm for production scheduling of open pit mines," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1153-1166, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Chen & Qinghua Gu & Rui Wang & Zhidong Feng & Chao Zhang, 2022. "Comprehensive Utilization of Mineral Resources: Optimal Blending of Polymetallic Ore Using an Improved NSGA-III Algorithm," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
    2. Guo, Hongquan & Nguyen, Hoang & Vu, Diep-Anh & Bui, Xuan-Nam, 2021. "Forecasting mining capital cost for open-pit mining projects based on artificial neural network approach," Resources Policy, Elsevier, vol. 74(C).
    3. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    4. Zhang, Zhimin & Elshkaki, Ayman, 2022. "An analysis of the supply-side factors of geological exploration in China based on provincial panel data between 1999 and 2017," Resources Policy, Elsevier, vol. 76(C).
    5. Mauricio Varas & Franco Basso & Armin Lüer-Villagra & Alejandro Mac Cawley & Sergio Maturana, 2019. "Managing premium wines using an $$(s - 1,s)$$ ( s - 1 , s ) inventory policy: a heuristic solution approach," Annals of Operations Research, Springer, vol. 280(1), pages 351-376, September.
    6. César Flores-Fonseca & Rodrigo Linfati & John Willmer Escobar, 2022. "Exact algorithms for production planning in mining considering the use of stockpiles and sequencing of power shovels in open-pit mines," Operational Research, Springer, vol. 22(3), pages 2529-2553, July.
    7. Jiang Yao & Zhiqiang Wang & Hongbin Chen & Weigang Hou & Xiaomiao Zhang & Xu Li & Weixing Yuan, 2023. "Open-Pit Mine Truck Dispatching System Based on Dynamic Ore Blending Decisions," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
    8. Tabesh, Mohammad & Moradi Afrapoli, Ali & Askari-Nasab, Hooman, 2023. "A two-stage simultaneous optimization of NPV and throughput in production planning of open pit mines," Resources Policy, Elsevier, vol. 80(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2017. "A methodology for the large-scale multi-period precedence-constrained knapsack problem: an application in the mining industry," International Journal of Production Economics, Elsevier, vol. 193(C), pages 12-20.
    2. Cinna Seifi & Marco Schulze & Jürgen Zimmermann, 2021. "Solution procedures for block selection and sequencing in flat-bedded potash underground mines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 409-440, June.
    3. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    4. King, Barry & Goycoolea, Marcos & Newman, A., 2017. "Optimizing the open pit-to-underground mining transition," European Journal of Operational Research, Elsevier, vol. 257(1), pages 297-309.
    5. Jélvez, Enrique & Morales, Nelson & Nancel-Penard, Pierre & Cornillier, Fabien, 2020. "A new hybrid heuristic algorithm for the Precedence Constrained Production Scheduling Problem: A mining application," Omega, Elsevier, vol. 94(C).
    6. Zhang, Jian & Nault, Barrie R. & Dimitrakopoulos, Roussos G., 2019. "Optimizing a mineral value chain with market uncertainty using benders decomposition," European Journal of Operational Research, Elsevier, vol. 274(1), pages 227-239.
    7. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2017. "A local branching heuristic for the open pit mine production scheduling problem," European Journal of Operational Research, Elsevier, vol. 257(1), pages 261-271.
    8. Amin Mousavi & Erhan Kozan & Shi Qiang Liu, 2016. "Comparative analysis of three metaheuristics for short-term open pit block sequencing," Journal of Heuristics, Springer, vol. 22(3), pages 301-329, June.
    9. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    10. Nancel-Penard, Pierre & Morales, Nelson & Cornillier, Fabien, 2022. "A recursive time aggregation-disaggregation heuristic for the multidimensional and multiperiod precedence-constrained knapsack problem: An application to the open-pit mine block sequencing problem," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1088-1099.
    11. Gonzalo Muñoz & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Maurice Queyranne & Orlando Rivera Letelier, 2018. "A study of the Bienstock–Zuckerberg algorithm: applications in mining and resource constrained project scheduling," Computational Optimization and Applications, Springer, vol. 69(2), pages 501-534, March.
    12. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2018. "A new methodology for the open-pit mine production scheduling problem," Omega, Elsevier, vol. 81(C), pages 169-182.
    13. Franco-Sepúlveda, Giovanni & Del Rio-Cuervo, Juan Camilo & Pachón-Hernández, María Angélica, 2019. "State of the art about metaheuristics and artificial neural networks applied to open pit mining," Resources Policy, Elsevier, vol. 60(C), pages 125-133.
    14. Chung, Joyce & Asad, Mohammad Waqar Ali & Topal, Erkan, 2022. "Timing of transition from open-pit to underground mining: A simultaneous optimisation model for open-pit and underground mine production schedules," Resources Policy, Elsevier, vol. 77(C).
    15. Paithankar, Amol & Chatterjee, Snehamoy & Goodfellow, Ryan, 2021. "Open-pit mining complex optimization under uncertainty with integrated cut-off grade based destination policies," Resources Policy, Elsevier, vol. 70(C).
    16. Chatterjee, Snehamoy & Sethi, Manas Ranjan & Asad, Mohammad Waqar Ali, 2016. "Production phase and ultimate pit limit design under commodity price uncertainty," European Journal of Operational Research, Elsevier, vol. 248(2), pages 658-667.
    17. W. Lambert & A. Newman, 2014. "Tailored Lagrangian Relaxation for the open pit block sequencing problem," Annals of Operations Research, Springer, vol. 222(1), pages 419-438, November.
    18. Del Castillo, M. Fernanda & Dimitrakopoulos, Roussos, 2019. "Dynamically optimizing the strategic plan of mining complexes under supply uncertainty," Resources Policy, Elsevier, vol. 60(C), pages 83-93.
    19. Akshay Chowdu & Peter Nesbitt & Andrea Brickey & Alexandra M. Newman, 2022. "Operations Research in Underground Mine Planning: A Review," Interfaces, INFORMS, vol. 52(2), pages 109-132, March.
    20. Danish, Abid Ali Khan & Khan, Asif & Muhammad, Khan & Ahmad, Waqas & Salman, Saad, 2021. "A simulated annealing based approach for open pit mine production scheduling with stockpiling option," Resources Policy, Elsevier, vol. 71(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:260:y:2017:i:1:p:212-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.