IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v257y2017i1p261-271.html
   My bibliography  Save this article

A local branching heuristic for the open pit mine production scheduling problem

Author

Listed:
  • Samavati, Mehran
  • Essam, Daryl
  • Nehring, Micah
  • Sarker, Ruhul

Abstract

This paper considers the well-known open pit mine production scheduling problem (OPMPSP). Given a discretisation of an orebody as a block model, this problem seeks a block extraction sequence that maximises the net present value (NPV) over a horizon of several periods. In practical applications, the number of blocks can be large, and therefore, the problem can be difficult to solve. It is even more challenging when it incorporates minimum resources requirements that are represented as lower bounds on resource constraints. In this study, we propose to tackle OPMPSP by using a novel metaheuristic technique known as local branching. To accelerate the search process, we combine local branching with a new adaptive branching scheme, and also develop a heuristic to quickly generate a starting feasible solution. Despite consideration of minimum requirements being seldom taken into account in the literature, this method yields near-optimal solutions for a series of data sets we have conceptually generated. To judge the performance of our methodology, the results are compared to those of two techniques from the literature, as well as to those obtained by a mixed integer linear programming (MILP) solver.

Suggested Citation

  • Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2017. "A local branching heuristic for the open pit mine production scheduling problem," European Journal of Operational Research, Elsevier, vol. 257(1), pages 261-271.
  • Handle: RePEc:eee:ejores:v:257:y:2017:i:1:p:261-271
    DOI: 10.1016/j.ejor.2016.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716305410
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. W. Lambert & A. Newman, 2014. "Tailored Lagrangian Relaxation for the open pit block sequencing problem," Annals of Operations Research, Springer, vol. 222(1), pages 419-438, November.
    2. Underwood, Robert & Tolwinski, Boleslaw, 1998. "A mathematical programming viewpoint for solving the ultimate pit problem," European Journal of Operational Research, Elsevier, vol. 107(1), pages 96-107, May.
    3. Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Alexandra Newman, 2013. "MineLib: a library of open pit mining problems," Annals of Operations Research, Springer, vol. 206(1), pages 93-114, July.
    4. Shishvan, Masoud Soleymani & Sattarvand, Javad, 2015. "Long term production planning of open pit mines by ant colony optimization," European Journal of Operational Research, Elsevier, vol. 240(3), pages 825-836.
    5. Guidong Zhu & Jonathan F. Bard & Gang Yu, 2006. "A Branch-and-Cut Procedure for the Multimode Resource-Constrained Project-Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 18(3), pages 377-390, August.
    6. Renaud Chicoisne & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Enrique Rubio, 2012. "A New Algorithm for the Open-Pit Mine Production Scheduling Problem," Operations Research, INFORMS, vol. 60(3), pages 517-528, June.
    7. Jélvez, Enrique & Morales, Nelson & Nancel-Penard, Pierre & Peypouquet, Juan & Reyes, Patricio, 2016. "Aggregation heuristic for the open-pit block scheduling problem," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1169-1177.
    8. Ramazan, Salih, 2007. "The new Fundamental Tree Algorithm for production scheduling of open pit mines," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1153-1166, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alipour, Aref & Khodaiari, Ali Asghar & Jafari, Ahmad & Tavakkoli-Moghaddam, Reza, 2022. "An integrated approach to open-pit mines production scheduling," Resources Policy, Elsevier, vol. 75(C).
    2. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2018. "A new methodology for the open-pit mine production scheduling problem," Omega, Elsevier, vol. 81(C), pages 169-182.
    3. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    4. Haonan, Zhou & Samavati, Mehran & Hill, Andrew J., 2021. "Heuristics for integrated blending optimisation in a mining supply chain," Omega, Elsevier, vol. 102(C).
    5. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2017. "A methodology for the large-scale multi-period precedence-constrained knapsack problem: an application in the mining industry," International Journal of Production Economics, Elsevier, vol. 193(C), pages 12-20.
    6. Filipe Rodrigues & Agostinho Agra & Lars Magnus Hvattum & Cristina Requejo, 2022. "Weighted iterated local branching for mathematical programming problems with binary variables," Journal of Heuristics, Springer, vol. 28(3), pages 329-350, June.
    7. Nancel-Penard, Pierre & Morales, Nelson & Cornillier, Fabien, 2022. "A recursive time aggregation-disaggregation heuristic for the multidimensional and multiperiod precedence-constrained knapsack problem: An application to the open-pit mine block sequencing problem," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1088-1099.
    8. Cinna Seifi & Marco Schulze & Jürgen Zimmermann, 2021. "Solution procedures for block selection and sequencing in flat-bedded potash underground mines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 409-440, June.
    9. Maenhout, Broos & Vanhoucke, Mario, 2018. "A perturbation matheuristic for the integrated personnel shift and task re-scheduling problem," European Journal of Operational Research, Elsevier, vol. 269(3), pages 806-823.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jélvez, Enrique & Morales, Nelson & Nancel-Penard, Pierre & Cornillier, Fabien, 2020. "A new hybrid heuristic algorithm for the Precedence Constrained Production Scheduling Problem: A mining application," Omega, Elsevier, vol. 94(C).
    2. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2017. "A methodology for the large-scale multi-period precedence-constrained knapsack problem: an application in the mining industry," International Journal of Production Economics, Elsevier, vol. 193(C), pages 12-20.
    3. Moreno, Eduardo & Rezakhah, Mojtaba & Newman, Alexandra & Ferreira, Felipe, 2017. "Linear models for stockpiling in open-pit mine production scheduling problems," European Journal of Operational Research, Elsevier, vol. 260(1), pages 212-221.
    4. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    5. King, Barry & Goycoolea, Marcos & Newman, A., 2017. "Optimizing the open pit-to-underground mining transition," European Journal of Operational Research, Elsevier, vol. 257(1), pages 297-309.
    6. Nancel-Penard, Pierre & Morales, Nelson & Cornillier, Fabien, 2022. "A recursive time aggregation-disaggregation heuristic for the multidimensional and multiperiod precedence-constrained knapsack problem: An application to the open-pit mine block sequencing problem," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1088-1099.
    7. Gonzalo Muñoz & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Maurice Queyranne & Orlando Rivera Letelier, 2018. "A study of the Bienstock–Zuckerberg algorithm: applications in mining and resource constrained project scheduling," Computational Optimization and Applications, Springer, vol. 69(2), pages 501-534, March.
    8. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2018. "A new methodology for the open-pit mine production scheduling problem," Omega, Elsevier, vol. 81(C), pages 169-182.
    9. Amin Mousavi & Erhan Kozan & Shi Qiang Liu, 2016. "Comparative analysis of three metaheuristics for short-term open pit block sequencing," Journal of Heuristics, Springer, vol. 22(3), pages 301-329, June.
    10. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    11. Jélvez, Enrique & Morales, Nelson & Nancel-Penard, Pierre & Peypouquet, Juan & Reyes, Patricio, 2016. "Aggregation heuristic for the open-pit block scheduling problem," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1169-1177.
    12. W. Lambert & A. Newman, 2014. "Tailored Lagrangian Relaxation for the open pit block sequencing problem," Annals of Operations Research, Springer, vol. 222(1), pages 419-438, November.
    13. Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Alexandra Newman, 2013. "MineLib: a library of open pit mining problems," Annals of Operations Research, Springer, vol. 206(1), pages 93-114, July.
    14. Thomas W. M. Vossen & R. Kevin Wood & Alexandra M. Newman, 2016. "Hierarchical Benders Decomposition for Open-Pit Mine Block Sequencing," Operations Research, INFORMS, vol. 64(4), pages 771-793, August.
    15. Danish, Abid Ali Khan & Khan, Asif & Muhammad, Khan & Ahmad, Waqas & Salman, Saad, 2021. "A simulated annealing based approach for open pit mine production scheduling with stockpiling option," Resources Policy, Elsevier, vol. 71(C).
    16. Cinna Seifi & Marco Schulze & Jürgen Zimmermann, 2021. "Solution procedures for block selection and sequencing in flat-bedded potash underground mines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 409-440, June.
    17. Zhang, Jian & Nault, Barrie R. & Dimitrakopoulos, Roussos G., 2019. "Optimizing a mineral value chain with market uncertainty using benders decomposition," European Journal of Operational Research, Elsevier, vol. 274(1), pages 227-239.
    18. Benjamin Johnson & Alexandra Newman & Jeffrey King, 2017. "Optimizing high-level nuclear waste disposal within a deep geologic repository," Annals of Operations Research, Springer, vol. 253(2), pages 733-755, June.
    19. Rafael Epstein & Marcel Goic & Andrés Weintraub & Jaime Catalán & Pablo Santibáñez & Rodolfo Urrutia & Raúl Cancino & Sergio Gaete & Augusto Aguayo & Felipe Caro, 2012. "Optimizing Long-Term Production Plans in Underground and Open-Pit Copper Mines," Operations Research, INFORMS, vol. 60(1), pages 4-17, February.
    20. Chatterjee, Snehamoy & Sethi, Manas Ranjan & Asad, Mohammad Waqar Ali, 2016. "Production phase and ultimate pit limit design under commodity price uncertainty," European Journal of Operational Research, Elsevier, vol. 248(2), pages 658-667.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:257:y:2017:i:1:p:261-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.