IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v60y2012i1p4-17.html
   My bibliography  Save this article

Optimizing Long-Term Production Plans in Underground and Open-Pit Copper Mines

Author

Listed:
  • Rafael Epstein

    (Industrial Engineering Department, University of Chile, 8370439 Santiago, Chile)

  • Marcel Goic

    (Industrial Engineering Department, University of Chile, 8370439 Santiago, Chile)

  • Andrés Weintraub

    (Industrial Engineering Department, University of Chile, 8370439 Santiago, Chile)

  • Jaime Catalán

    (Fundación para la Transferencia Tecnológica, 8370481 Santiago, Chile)

  • Pablo Santibáñez

    (Fundación para la Transferencia Tecnológica, 8370481 Santiago, Chile)

  • Rodolfo Urrutia

    (Fundación para la Transferencia Tecnológica, 8370481 Santiago, Chile)

  • Raúl Cancino

    (Codelco Chile, División Norte, El Teniente, División Andina, 8370424 Santiago, Chile)

  • Sergio Gaete

    (Codelco Chile, División Norte, El Teniente, División Andina, 8370424 Santiago, Chile)

  • Augusto Aguayo

    (Codelco Chile, División Norte, El Teniente, División Andina, 8370424 Santiago, Chile)

  • Felipe Caro

    (UCLA Anderson School of Management, Los Angeles, California 90095)

Abstract

We present a methodology for long-term mine planning based on a general capacitated multicommodity network flow formulation. It considers underground and open-pit ore deposits sharing multiple downstream processing plants over a long horizon. The purpose of the model is to optimize several mines in an integrated fashion, but real size instances are hard to solve due to the combinatorial nature of the problem. We tackle this by solving the relaxation of a tight linear formulation, and we round the resulting near-integer solution with a customized procedure. The model has been implemented at Codelco, the largest copper producer in the world. Since 2001, the system has been used on a regular basis and has increased the net present value of the production plan for a single mine by 5%. Moreover, integrating multiple mines provided an additional increase of 3%. The system has allowed planners to evaluate more scenarios. In particular, the model was used to study the option of delaying by four years the conversion of Chiquicamata, Codelco's largest open-pit mine, to underground operations.

Suggested Citation

  • Rafael Epstein & Marcel Goic & Andrés Weintraub & Jaime Catalán & Pablo Santibáñez & Rodolfo Urrutia & Raúl Cancino & Sergio Gaete & Augusto Aguayo & Felipe Caro, 2012. "Optimizing Long-Term Production Plans in Underground and Open-Pit Copper Mines," Operations Research, INFORMS, vol. 60(1), pages 4-17, February.
  • Handle: RePEc:inm:oropre:v:60:y:2012:i:1:p:4-17
    DOI: 10.1287/opre.1110.1003
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1110.1003
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1110.1003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. W. Matthew Carlyle & B. Curtis Eaves, 2001. "Underground Planning at Stillwater Mining Company," Interfaces, INFORMS, vol. 31(4), pages 50-60, August.
    2. Alexandra M. Newman & Enrique Rubio & Rodrigo Caro & Andrés Weintraub & Kelly Eurek, 2010. "A Review of Operations Research in Mine Planning," Interfaces, INFORMS, vol. 40(3), pages 222-245, June.
    3. Ramazan, Salih, 2007. "The new Fundamental Tree Algorithm for production scheduling of open pit mines," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1153-1166, March.
    4. Dorit S. Hochbaum & Anna Chen, 2000. "Performance Analysis and Best Implementations of Old and New Algorithms for the Open-Pit Mining Problem," Operations Research, INFORMS, vol. 48(6), pages 894-914, December.
    5. M Kumral & P A Dowd, 2005. "A simulated annealing approach to mine production scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 922-930, August.
    6. Christopher Alford & Marcus Brazil & David H. Lee, 2007. "Optimisation in Underground Mining," International Series in Operations Research & Management Science, in: Andres Weintraub & Carlos Romero & Trond Bjørndal & Rafael Epstein & Jaime Miranda (ed.), Handbook Of Operations Research In Natural Resources, chapter 0, pages 561-577, Springer.
    7. Underwood, Robert & Tolwinski, Boleslaw, 1998. "A mathematical programming viewpoint for solving the ultimate pit problem," European Journal of Operational Research, Elsevier, vol. 107(1), pages 96-107, May.
    8. Jean-Claude Picard, 1976. "Maximal Closure of a Graph and Applications to Combinatorial Problems," Management Science, INFORMS, vol. 22(11), pages 1268-1272, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    2. Thomas W. M. Vossen & R. Kevin Wood & Alexandra M. Newman, 2016. "Hierarchical Benders Decomposition for Open-Pit Mine Block Sequencing," Operations Research, INFORMS, vol. 64(4), pages 771-793, August.
    3. Michelle L. Blom & Christina N. Burt & Adrian R. Pearce & Peter J. Stuckey, 2014. "A Decomposition-Based Heuristic for Collaborative Scheduling in a Network of Open-Pit Mines," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 658-676, November.
    4. Chung, Joyce & Asad, Mohammad Waqar Ali & Topal, Erkan, 2022. "Timing of transition from open-pit to underground mining: A simultaneous optimisation model for open-pit and underground mine production schedules," Resources Policy, Elsevier, vol. 77(C).
    5. Michelle L. Blom & Adrian R. Pearce & Peter J. Stuckey, 2016. "A Decomposition-Based Algorithm for the Scheduling of Open-Pit Networks Over Multiple Time Periods," Management Science, INFORMS, vol. 62(10), pages 3059-3084, October.
    6. César Flores-Fonseca & Rodrigo Linfati & John Willmer Escobar, 2022. "Exact algorithms for production planning in mining considering the use of stockpiles and sequencing of power shovels in open-pit mines," Operational Research, Springer, vol. 22(3), pages 2529-2553, July.
    7. Marco Schulze & Julia Rieck & Cinna Seifi & Jürgen Zimmermann, 2016. "Machine scheduling in underground mining: an application in the potash industry," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(2), pages 365-403, March.
    8. Guowei Liu & Fengshan Ma & Gang Liu & Haijun Zhao & Jie Guo & Jiayuan Cao, 2019. "Application of Multivariate Statistical Analysis to Identify Water Sources in A Coastal Gold Mine, Shandong, China," Sustainability, MDPI, vol. 11(12), pages 1-17, June.
    9. Zhang, Jian & Nault, Barrie R. & Dimitrakopoulos, Roussos G., 2019. "Optimizing a mineral value chain with market uncertainty using benders decomposition," European Journal of Operational Research, Elsevier, vol. 274(1), pages 227-239.
    10. Martin L. Smith & Stewart J. Wicks, 2014. "Medium-Term Production Scheduling of the Lumwana Mining Complex," Interfaces, INFORMS, vol. 44(2), pages 176-194, April.
    11. Foroughi, Sorayya & Hamidi, Jafar Khademi & Monjezi, Masoud & Nehring, Micah, 2019. "The integrated optimization of underground stope layout designing and production scheduling incorporating a non-dominated sorting genetic algorithm (NSGA-II)," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    12. Pérez, Juan & Maldonado, Sebastián & González-Ramírez, Rosa, 2018. "Decision support for fleet allocation and contract renegotiation in contracted open-pit mine blasting operations," International Journal of Production Economics, Elsevier, vol. 204(C), pages 59-69.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandra M. Newman & Enrique Rubio & Rodrigo Caro & Andrés Weintraub & Kelly Eurek, 2010. "A Review of Operations Research in Mine Planning," Interfaces, INFORMS, vol. 40(3), pages 222-245, June.
    2. O’Sullivan, Dónal & Newman, Alexandra, 2015. "Optimization-based heuristics for underground mine scheduling," European Journal of Operational Research, Elsevier, vol. 241(1), pages 248-259.
    3. W. Lambert & A. Newman, 2014. "Tailored Lagrangian Relaxation for the open pit block sequencing problem," Annals of Operations Research, Springer, vol. 222(1), pages 419-438, November.
    4. Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Alexandra Newman, 2013. "MineLib: a library of open pit mining problems," Annals of Operations Research, Springer, vol. 206(1), pages 93-114, July.
    5. Chatterjee, Snehamoy & Sethi, Manas Ranjan & Asad, Mohammad Waqar Ali, 2016. "Production phase and ultimate pit limit design under commodity price uncertainty," European Journal of Operational Research, Elsevier, vol. 248(2), pages 658-667.
    6. King, Barry & Goycoolea, Marcos & Newman, A., 2017. "Optimizing the open pit-to-underground mining transition," European Journal of Operational Research, Elsevier, vol. 257(1), pages 297-309.
    7. Nancel-Penard, Pierre & Morales, Nelson & Cornillier, Fabien, 2022. "A recursive time aggregation-disaggregation heuristic for the multidimensional and multiperiod precedence-constrained knapsack problem: An application to the open-pit mine block sequencing problem," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1088-1099.
    8. Jélvez, Enrique & Morales, Nelson & Nancel-Penard, Pierre & Peypouquet, Juan & Reyes, Patricio, 2016. "Aggregation heuristic for the open-pit block scheduling problem," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1169-1177.
    9. Jélvez, Enrique & Morales, Nelson & Nancel-Penard, Pierre & Cornillier, Fabien, 2020. "A new hybrid heuristic algorithm for the Precedence Constrained Production Scheduling Problem: A mining application," Omega, Elsevier, vol. 94(C).
    10. Bisera Andrić Gušavac & Selman Karagoz & Milena Popović & Dragan Pamućar & Muhammet Deveci, 2023. "Reconcilement of conflicting goals: a novel operations research-based methodology for environmental management," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7423-7460, August.
    11. Chung, Joyce & Asad, Mohammad Waqar Ali & Topal, Erkan, 2022. "Timing of transition from open-pit to underground mining: A simultaneous optimisation model for open-pit and underground mine production schedules," Resources Policy, Elsevier, vol. 77(C).
    12. Barry King & Alexandra Newman, 2018. "Optimizing the Cutoff Grade for an Operational Underground Mine," Interfaces, INFORMS, vol. 48(4), pages 357-371, August.
    13. Zhang, Jian & Nault, Barrie R. & Dimitrakopoulos, Roussos G., 2019. "Optimizing a mineral value chain with market uncertainty using benders decomposition," European Journal of Operational Research, Elsevier, vol. 274(1), pages 227-239.
    14. Zhang, Jian & Dimitrakopoulos, Roussos G., 2017. "A dynamic-material-value-based decomposition method for optimizing a mineral value chain with uncertainty," European Journal of Operational Research, Elsevier, vol. 258(2), pages 617-625.
    15. Paithankar, Amol & Chatterjee, Snehamoy & Goodfellow, Ryan & Asad, Mohammad Waqar Ali, 2020. "Simultaneous stochastic optimization of production sequence and dynamic cut-off grades in an open pit mining operation," Resources Policy, Elsevier, vol. 66(C).
    16. Paithankar, Amol & Chatterjee, Snehamoy & Goodfellow, Ryan, 2021. "Open-pit mining complex optimization under uncertainty with integrated cut-off grade based destination policies," Resources Policy, Elsevier, vol. 70(C).
    17. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    18. M Kumral & P A Dowd, 2005. "A simulated annealing approach to mine production scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 922-930, August.
    19. Biswas, Pritam & Sinha, Rabindra Kumar & Sen, Phalguni, 2023. "A review of state-of-the-art techniques for the determination of the optimum cut-off grade of a metalliferous deposit with a bibliometric mapping in a surface mine planning context," Resources Policy, Elsevier, vol. 83(C).
    20. Christina N. Burt & Lou Caccetta, 2014. "Equipment Selection for Surface Mining: A Review," Interfaces, INFORMS, vol. 44(2), pages 143-162, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:60:y:2012:i:1:p:4-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.