IDEAS home Printed from https://ideas.repec.org/a/ijm/journl/v7y2014i2p119-146.html
   My bibliography  Save this article

A Geospatial Dynamic Microsimulation Model for Household Population Projections

Author

Listed:
  • Susan M. Rogers

    (Research Triangle Institute)

  • James Rineer

    (Research Triangle Institute)

  • Matthew D. Scruggs

    (Research Triangle Institute)

  • William D. Wheaton

    (Research Triangle Institute)

  • Phillip C. Cooley

    (Research Triangle Institute)

  • Douglas J. Roberts

    (Research Triangle Institute)

  • Diane K. Wagener

    (Research Triangle Institute)

Abstract

Forecasting Populations (FPOP) is a microsimulation model (MSM) that is the demographic core of an extensible modeling framework. The framework, with FPOP at its core, enables the geospatial projection of a population under purely demographic processes or under the additional influence of exogenous factors such as disease, policy changes and prevention programs, or environmental stressors. Empirically-derived transition probabilities of life events such as birth, death, marriage, divorce and migration, captured in lookup table format, drive the simulation. These transition probabilities can be modified dynamically by external user-defined functions or other external MSMs. The use of MSM structures and methodologies enables FPOP to portray the impact of heterogeneity in the geospatial dimension (e.g., distribution of environmental factors or distribution of intervention programs), as well as the social dimension (e.g., household or social network correlates), on the projections. POP is designed and structured to: enable linking with external MSMs of any kind; support inclusion or configuration of more detailed transition probabilities; be scalable to millions of agents; use either an existing baseline synthetic population or a custom synthetic population of the users design; and, run under computing environments that dont require a high degree of specialized software or hardware. In this paper we describe the design and structure of FPOP and then apply FPOP first under purely demographic processes and, secondly, in conjunction with an external disease model of obesity.The objective of FPOP is to provide a demographically realistic projection of the size, structure, and movement of populations and households decades into the future.

Suggested Citation

  • Susan M. Rogers & James Rineer & Matthew D. Scruggs & William D. Wheaton & Phillip C. Cooley & Douglas J. Roberts & Diane K. Wagener, 2014. "A Geospatial Dynamic Microsimulation Model for Household Population Projections," International Journal of Microsimulation, International Microsimulation Association, vol. 7(2), pages 119-146.
  • Handle: RePEc:ijm:journl:v:7:y:2014:i:2:p:119-146
    as

    Download full text from publisher

    File URL: http://www.microsimulation.org/IJM/V7_2/5_IJM_7_2_2014_Rogers_et_al.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sabine Zinn, 2012. "A Mate-Matching Algorithm for Continuous-Time Microsimulation Models," International Journal of Microsimulation, International Microsimulation Association, vol. 5(1), pages 31-51.
    2. Zucchelli, E & Jones, A.M & Rice, N, 2010. "The evaluation of health policies through microsimulation methods," Health, Econometrics and Data Group (HEDG) Working Papers 10/03, HEDG, c/o Department of Economics, University of York.
    3. repec:cai:popine:popu_p1998_10n1_0136 is not listed on IDEAS
    4. Mark Levitan & Christine D'Onofrio & Gayatri Koolwal & John Krampner & Daniel Scheer & Todd Seidel & Vicky Virgin, 2010. "Using the American community survey to create a National Academy of Sciences-style poverty measure: Work by the New York City Center for Economic Opportunity," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 29(2), pages 373-386.
    5. Beckman, Richard J. & Baggerly, Keith A. & McKay, Michael D., 1996. "Creating synthetic baseline populations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(6), pages 415-429, November.
    6. Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohana Mondal & Michael P. Cameron & Jacques Poot, 2021. "Towards a dynamic spatial microsimulation model for projecting Auckland's spatial distribution of ethnic groups," Working Papers in Economics 21/12, University of Waikato.
    2. Cathal O'Donoghue & Gijs Dekkers, 2018. "Increasing the Impact of Dynamic Microsimulation Modelling," International Journal of Microsimulation, International Microsimulation Association, vol. 11(1), pages 61-96.
    3. Abbygail Jaccard & Lise Retat & Martin Brown & Laura Webber & Zaid Chalabi, 2018. "Global Sensitivity Analysis of a Model Simulating an Individual’s Health State through Their Lifetime," International Journal of Microsimulation, International Microsimulation Association, vol. 11(3), pages 100-121.
    4. Barry J. Milne & Roy Lay-Yee & Jessica M. Mc Lay & Janet Pearson & Martin von Randow & Peter Davis, 2015. "Modelling the Early life-course (MELC): A Microsimulation Model of Child Development in New Zealand," International Journal of Microsimulation, International Microsimulation Association, vol. 8(2), pages 28-60.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nargesalsadat Dorratoltaj & Achla Marathe & Bryan L Lewis & Samarth Swarup & Stephen G Eubank & Kaja M Abbas, 2017. "Epidemiological and economic impact of pandemic influenza in Chicago: Priorities for vaccine interventions," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-25, June.
    2. Jeremy Hadidjojo & Siew Ann Cheong, 2011. "Equal Graph Partitioning on Estimated Infection Network as an Effective Epidemic Mitigation Measure," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-10, July.
    3. Catalina Amuedo-Dorantes & Neeraj Kaushal & Ashley N. Muchow, 2021. "Timing of social distancing policies and COVID-19 mortality: county-level evidence from the U.S," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(4), pages 1445-1472, October.
    4. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    5. Antonio Diez de los Rios, 2022. "A macroeconomic model of an epidemic with silent transmission and endogenous self‐isolation," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(S1), pages 581-625, February.
    6. Elisa Giannone & Nuno Paixao & Xinle Pang, 2021. "The Geography of Pandemic Containment," Staff Working Papers 21-26, Bank of Canada.
    7. Mugnaine, Michele & Gabrick, Enrique C. & Protachevicz, Paulo R. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Batista, Antonio M. & Caldas, Iberê L. & Szezech Jr, José D. & V, 2022. "Control attenuation and temporary immunity in a cellular automata SEIR epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    8. Jian Liu & Xiaosu Ma & Yi Zhu & Jing Li & Zong He & Sheng Ye, 2021. "Generating and Visualizing Spatially Disaggregated Synthetic Population Using a Web-Based Geospatial Service," Sustainability, MDPI, vol. 13(3), pages 1-16, February.
    9. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    10. Christos Nicolaides & Demetris Avraam & Luis Cueto‐Felgueroso & Marta C. González & Ruben Juanes, 2020. "Hand‐Hygiene Mitigation Strategies Against Global Disease Spreading through the Air Transportation Network," Risk Analysis, John Wiley & Sons, vol. 40(4), pages 723-740, April.
    11. James Truscott & Neil M Ferguson, 2012. "Evaluating the Adequacy of Gravity Models as a Description of Human Mobility for Epidemic Modelling," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-12, October.
    12. Templ, Matthias & Meindl, Bernhard & Kowarik, Alexander & Dupriez, Olivier, 2017. "Simulation of Synthetic Complex Data: The R Package simPop," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i10).
    13. Chen, Zhiwei & Li, Xiaopeng, 2021. "Unobserved heterogeneity in transportation equity analysis: Evidence from a bike-sharing system in southern Tampa," Journal of Transport Geography, Elsevier, vol. 91(C).
    14. GENEVOIS Anne-Sophie & LIEGEOIS Philippe & PI ALPERIN Maria Noel, 2019. "DyMH_LU: a simple tool for modelling and simulating the health status of the Luxembourgish elderly in the longer run," LISER Working Paper Series 2019-06, Luxembourg Institute of Socio-Economic Research (LISER).
    15. Eva K. Lee & Chien-Hung Chen & Ferdinand Pietz & Bernard Benecke, 2009. "Modeling and Optimizing the Public-Health Infrastructure for Emergency Response," Interfaces, INFORMS, vol. 39(5), pages 476-490, October.
    16. Brownstone, David, 1997. "Multiple Imputation Methodology for Missing Data, Non-Random Response, and Panel Attrition," University of California Transportation Center, Working Papers qt2zd6w6hh, University of California Transportation Center.
    17. Victor W. Chu & Raymond K. Wong & Chi-Hung Chi & Wei Zhou & Ivan Ho, 2017. "The design of a cloud-based tracker platform based on system-of-systems service architecture," Information Systems Frontiers, Springer, vol. 19(6), pages 1283-1299, December.
    18. Stefano Guarino & Enrico Mastrostefano & Massimo Bernaschi & Alessandro Celestini & Marco Cianfriglia & Davide Torre & Lena Rebecca Zastrow, 2021. "Inferring Urban Social Networks from Publicly Available Data," Future Internet, MDPI, vol. 13(5), pages 1-45, April.
    19. Pac, Jessica & Nam, Jaehyun & Waldfogel, Jane & Wimer, Chris, 2017. "Young child poverty in the United States: Analyzing trends in poverty and the role of anti-poverty programs using the Supplemental Poverty Measure," Children and Youth Services Review, Elsevier, vol. 74(C), pages 35-49.
    20. Zou, Tianqi & Aemmer, Zack & MacKenzie, Don & Laberteaux, Ken, 2022. "A framework for estimating commute accessibility and adoption of ridehailing services under functional improvements from vehicle automation," Journal of Transport Geography, Elsevier, vol. 102(C).

    More about this item

    Keywords

    Mathematical Models; Numerical Methods; Computational Techniques; Order Dynamics; Computer Programs; Software; Map-Reduce programming model;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C69 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Other
    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ijm:journl:v:7:y:2014:i:2:p:119-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jinjing Li (email available below). General contact details of provider: http://www.microsimulation.org/ijm/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.