IDEAS home Printed from https://ideas.repec.org/a/ijm/journl/v1y2007i1p26-34.html
   My bibliography  Save this article

Simulating disease transmission dynamics at a multi-scale level

Author

Listed:
  • Moshe B Hoshen

    (Department of Physics, University of Liverpool, Liverpool L69 7ZE, UK)

  • Anthony H Burton

    (Vaccines and Biologicals, World Health Organization, Geneva, Switzerland)

  • Themis J V Bowcock

    (Department of Physics, University of Liverpool, Liverpool L69 7ZE, UK)

Abstract

We present a model of the global spread of a generic human infectious disease using a Monte Carlo micro-simulation with large-scale parallel-processing. This prototype has been constructed and tested on a model of the entire population of the British Isles. Typical results are presented. A microsimulation of this order of magnitude of population simulation has not been previously attained. Further, an efficiency assessment of processor usage indicates that extension to the global scale is feasible. We conclude that the flexible approach outlined provides the framework for a virtual laboratory capable of supporting public health policy making at a variety of spatial scales.

Suggested Citation

  • Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
  • Handle: RePEc:ijm:journl:v:1:y:2007:i:1:p:26-34
    as

    Download full text from publisher

    File URL: http://ima.natsem.canberra.edu.au/IJM/V1_1/IJM_1_1_4.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
    2. Alison P. Galvani & Robert M. May, 2005. "Dimensions of superspreading," Nature, Nature, vol. 438(7066), pages 293-295, November.
    3. D. Brockmann & L. Hufnagel & T. Geisel, 2006. "The scaling laws of human travel," Nature, Nature, vol. 439(7075), pages 462-465, January.
    4. Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
    5. Neil M. Ferguson & Derek A.T. Cummings & Simon Cauchemez & Christophe Fraser & Steven Riley & Aronrag Meeyai & Sopon Iamsirithaworn & Donald S. Burke, 2005. "Strategies for containing an emerging influenza pandemic in Southeast Asia," Nature, Nature, vol. 437(7056), pages 209-214, September.
    6. David M. Morens & Gregory K. Folkers & Anthony S. Fauci, 2004. "The challenge of emerging and re-emerging infectious diseases," Nature, Nature, vol. 430(6996), pages 242-249, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cathal O'Donoghue & Karyn Morrissey & John Lennon, 2014. "Spatial Microsimulation Modelling: a Review of Applications and Methodological Choices," International Journal of Microsimulation, International Microsimulation Association, vol. 7(1), pages 26-75.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lawrence M. Wein & Michael P. Atkinson, 2009. "Assessing Infection Control Measures for Pandemic Influenza," Risk Analysis, John Wiley & Sons, vol. 29(7), pages 949-962, July.
    2. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    3. Jeremy Hadidjojo & Siew Ann Cheong, 2011. "Equal Graph Partitioning on Estimated Infection Network as an Effective Epidemic Mitigation Measure," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-10, July.
    4. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    5. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    6. James Truscott & Neil M Ferguson, 2012. "Evaluating the Adequacy of Gravity Models as a Description of Human Mobility for Epidemic Modelling," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-12, October.
    7. Eva K. Lee & Chien-Hung Chen & Ferdinand Pietz & Bernard Benecke, 2009. "Modeling and Optimizing the Public-Health Infrastructure for Emergency Response," Interfaces, INFORMS, vol. 39(5), pages 476-490, October.
    8. Kathrin Büttner & Joachim Krieter & Arne Traulsen & Imke Traulsen, 2013. "Efficient Interruption of Infection Chains by Targeted Removal of Central Holdings in an Animal Trade Network," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-12, September.
    9. Jonas I Liechti & Gabriel E Leventhal & Sebastian Bonhoeffer, 2017. "Host population structure impedes reversion to drug sensitivity after discontinuation of treatment," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-19, August.
    10. Eva K. Lee & Ferdinand Pietz & Bernard Benecke & Jacquelyn Mason & Greg Burel, 2013. "Advancing Public Health and Medical Preparedness with Operations Research," Interfaces, INFORMS, vol. 43(1), pages 79-98, February.
    11. Tini Garske & Hongjie Yu & Zhibin Peng & Min Ye & Hang Zhou & Xiaowen Cheng & Jiabing Wu & Neil Ferguson, 2011. "Travel Patterns in China," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-9, February.
    12. Yunhwan Kim & Hohyung Ryu & Sunmi Lee, 2018. "Agent-Based Modeling for Super-Spreading Events: A Case Study of MERS-CoV Transmission Dynamics in the Republic of Korea," IJERPH, MDPI, vol. 15(11), pages 1-17, October.
    13. Akira Watanabe & Hiroyuki Matsuda, 2023. "Effectiveness of feedback control and the trade-off between death by COVID-19 and costs of countermeasures," Health Care Management Science, Springer, vol. 26(1), pages 46-61, March.
    14. Wang, Jia-Zeng & Peng, Wei-Hua, 2020. "Fluctuations for the outbreak prevalence of the SIR epidemics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    15. Andy Hong & Sandip Chakrabarti, 2023. "Compact living or policy inaction? Effects of urban density and lockdown on the COVID-19 outbreak in the US," Urban Studies, Urban Studies Journal Limited, vol. 60(9), pages 1588-1609, July.
    16. Rakowski, Franciszek & Gruziel, Magdalena & Bieniasz-Krzywiec, Łukasz & Radomski, Jan P., 2010. "Influenza epidemic spread simulation for Poland — a large scale, individual based model study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3149-3165.
    17. van der Weijden, Charlie P. & Stein, Mart L. & Jacobi, André J. & Kretzschmar, Mirjam E.E. & Reintjes, Ralf & van Steenbergen, Jim E. & Timen, Aura, 2013. "Choosing pandemic parameters for pandemic preparedness planning: A comparison of pandemic scenarios prior to and following the influenza A(H1N1) 2009 pandemic," Health Policy, Elsevier, vol. 109(1), pages 52-62.
    18. Savachkin, Alex & Uribe, Andrés, 2012. "Dynamic redistribution of mitigation resources during influenza pandemics," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 33-45.
    19. T Déirdre Hollingsworth & Don Klinkenberg & Hans Heesterbeek & Roy M Anderson, 2011. "Mitigation Strategies for Pandemic Influenza A: Balancing Conflicting Policy Objectives," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-11, February.
    20. Calvin Pozderac & Brian Skinner, 2021. "Superspreading of SARS-CoV-2 in the USA," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-10, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ijm:journl:v:1:y:2007:i:1:p:26-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jinjing Li (email available below). General contact details of provider: http://www.microsimulation.org/ijm/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.