IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v13y2021i5p108-d543912.html
   My bibliography  Save this article

Inferring Urban Social Networks from Publicly Available Data

Author

Listed:
  • Stefano Guarino

    (Istituto per le Applicazioni del Calcolo “Mauro Picone”, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
    These authors contributed equally to this work.)

  • Enrico Mastrostefano

    (Istituto per le Applicazioni del Calcolo “Mauro Picone”, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
    These authors contributed equally to this work.)

  • Massimo Bernaschi

    (Istituto per le Applicazioni del Calcolo “Mauro Picone”, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy)

  • Alessandro Celestini

    (Istituto per le Applicazioni del Calcolo “Mauro Picone”, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy)

  • Marco Cianfriglia

    (Istituto per le Applicazioni del Calcolo “Mauro Picone”, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy)

  • Davide Torre

    (Istituto per le Applicazioni del Calcolo “Mauro Picone”, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy)

  • Lena Rebecca Zastrow

    (Istituto per le Applicazioni del Calcolo “Mauro Picone”, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy)

Abstract

The definition of suitable generative models for synthetic yet realistic social networks is a widely studied problem in the literature. By not being tied to any real data, random graph models cannot capture all the subtleties of real networks and are inadequate for many practical contexts—including areas of research, such as computational epidemiology, which are recently high on the agenda. At the same time, the so-called contact networks describe interactions, rather than relationships, and are strongly dependent on the application and on the size and quality of the sample data used to infer them. To fill the gap between these two approaches, we present a data-driven model for urban social networks, implemented and released as open source software. By using just widely available aggregated demographic and social-mixing data, we are able to create, for a territory of interest, an age-stratified and geo-referenced synthetic population whose individuals are connected by “strong ties” of two types: intra-household (e.g., kinship) or friendship. While household links are entirely data-driven, we propose a parametric probabilistic model for friendship, based on the assumption that distances and age differences play a role, and that not all individuals are equally sociable. The demographic and geographic factors governing the structure of the obtained network, under different configurations, are thoroughly studied through extensive simulations focused on three Italian cities of different size.

Suggested Citation

  • Stefano Guarino & Enrico Mastrostefano & Massimo Bernaschi & Alessandro Celestini & Marco Cianfriglia & Davide Torre & Lena Rebecca Zastrow, 2021. "Inferring Urban Social Networks from Publicly Available Data," Future Internet, MDPI, vol. 13(5), pages 1-45, April.
  • Handle: RePEc:gam:jftint:v:13:y:2021:i:5:p:108-:d:543912
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/13/5/108/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/13/5/108/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Büchel, Konstantin & Ehrlich, Maximilian v., 2020. "Cities and the structure of social interactions: Evidence from mobile phone data," Journal of Urban Economics, Elsevier, vol. 119(C).
    2. Flaminio Squazzoni & J. Gareth Polhill & Bruce Edmonds & Petra Ahrweiler & Patrycja Antosz & Geeske Scholz & Emile Chappin & Melania Borit & Harko Verhagen & Francesca Giardini & Nigel Gilbert, 2020. "Computational Models That Matter During a Global Pandemic Outbreak: A Call to Action," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(2), pages 1-10.
    3. Bailey, Michael & Farrell, Patrick & Kuchler, Theresa & Stroebel, Johannes, 2020. "Social connectedness in urban areas," Journal of Urban Economics, Elsevier, vol. 118(C).
    4. Lambiotte, Renaud & Blondel, Vincent D. & de Kerchove, Cristobald & Huens, Etienne & Prieur, Christophe & Smoreda, Zbigniew & Van Dooren, Paul, 2008. "Geographical dispersal of mobile communication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5317-5325.
    5. Wong, Ling Heng & Pattison, Philippa & Robins, Garry, 2006. "A spatial model for social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 99-120.
    6. Beckman, Richard J. & Baggerly, Keith A. & McKay, Michael D., 1996. "Creating synthetic baseline populations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(6), pages 415-429, November.
    7. Mike Thelwall, 2009. "Homophily in MySpace," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(2), pages 219-231, February.
    8. Meysam Alizadeh & Claudio Cioffi-Revilla & Andrew Crooks, 2017. "Generating and analyzing spatial social networks," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 362-390, September.
    9. Dina Mistry & Maria Litvinova & Ana Pastore y Piontti & Matteo Chinazzi & Laura Fumanelli & Marcelo F. C. Gomes & Syed A. Haque & Quan-Hui Liu & Kunpeng Mu & Xinyue Xiong & M. Elizabeth Halloran & Ira, 2021. "Inferring high-resolution human mixing patterns for disease modeling," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    10. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    11. Sascha Holzhauer & Friedrich Krebs & Andreas Ernst, 2013. "Considering baseline homophily when generating spatial social networks for agent-based modelling," Computational and Mathematical Organization Theory, Springer, vol. 19(2), pages 128-150, June.
    12. Gergely Palla & Albert-László Barabási & Tamás Vicsek, 2007. "Quantifying social group evolution," Nature, Nature, vol. 446(7136), pages 664-667, April.
    13. Jean-Philippe Cointet & Camille Roth, 2007. "How Realistic Should Knowledge Diffusion Models Be?," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(3), pages 1-5.
    14. Madalina Olteanu & Julien Randon-Furling & William A. V. Clark, 2019. "Segregation through the multiscalar lens," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(25), pages 12250-12254, June.
    15. Johannes Illenberger & Kai Nagel & Gunnar Flötteröd, 2013. "The Role of Spatial Interaction in Social Networks," Networks and Spatial Economics, Springer, vol. 13(3), pages 255-282, September.
    16. Ciro Cattuto & Wouter Van den Broeck & Alain Barrat & Vittoria Colizza & Jean-François Pinton & Alessandro Vespignani, 2010. "Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks," PLOS ONE, Public Library of Science, vol. 5(7), pages 1-9, July.
    17. Joël Mossong & Niel Hens & Mark Jit & Philippe Beutels & Kari Auranen & Rafael Mikolajczyk & Marco Massari & Stefania Salmaso & Gianpaolo Scalia Tomba & Jacco Wallinga & Janneke Heijne & Malgorzata Sa, 2008. "Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 5(3), pages 1-1, March.
    18. Johan Barthelemy & Philippe L. Toint, 2013. "Synthetic Population Generation Without a Sample," Transportation Science, INFORMS, vol. 47(2), pages 266-279, May.
    19. Kowald, Matthias & van den Berg, Pauline & Frei, Andreas & Carrasco, Juan-Antonio & Arentze, Theo & Axhausen, Kay & Mok, Diana & Timmermans, Harry & Wellman, Barry, 2013. "Distance patterns of personal networks in four countries: a comparative study," Journal of Transport Geography, Elsevier, vol. 31(C), pages 236-248.
    20. Stephen Eubank & Hasan Guclu & V. S. Anil Kumar & Madhav V. Marathe & Aravind Srinivasan & Zoltán Toroczkai & Nan Wang, 2004. "Modelling disease outbreaks in realistic urban social networks," Nature, Nature, vol. 429(6988), pages 180-184, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Kenyeres & Jozef Kenyeres, 2023. "Distributed Average Consensus Algorithms in d-Regular Bipartite Graphs: Comparative Study," Future Internet, MDPI, vol. 15(5), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meysam Alizadeh & Claudio Cioffi-Revilla & Andrew Crooks, 2017. "Generating and analyzing spatial social networks," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 362-390, September.
    2. Kuchler, Theresa & Russel, Dominic & Stroebel, Johannes, 2022. "JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook," Journal of Urban Economics, Elsevier, vol. 127(C).
    3. Giancarlos Parady & Kiyoshi Takami & Noboru Harata, 2021. "Egocentric social networks and social interactions in the Greater Tokyo Area," Transportation, Springer, vol. 48(2), pages 831-856, April.
    4. César Ducruet & Laurent Beauguitte, 2014. "Spatial Science and Network Science: Review and Outcomes of a Complex Relationship," Networks and Spatial Economics, Springer, vol. 14(3), pages 297-316, December.
    5. Hend Alrasheed & Alhanoof Althnian & Heba Kurdi & Heila Al-Mgren & Sulaiman Alharbi, 2020. "COVID-19 Spread in Saudi Arabia: Modeling, Simulation and Analysis," IJERPH, MDPI, vol. 17(21), pages 1-24, October.
    6. Bisin, Alberto & Moro, Andrea, 2022. "Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
    7. Jian Liu & Xiaosu Ma & Yi Zhu & Jing Li & Zong He & Sheng Ye, 2021. "Generating and Visualizing Spatially Disaggregated Synthetic Population Using a Web-Based Geospatial Service," Sustainability, MDPI, vol. 13(3), pages 1-16, February.
    8. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    9. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Alberto Bisin & Andrea Moro, 2020. "Learning Epidemiology by Doing: The Empirical Implications of a Spatial-SIR Model with Behavioral Responses," NBER Working Papers 27590, National Bureau of Economic Research, Inc.
    11. Laura Ozella & Francesco Gesualdo & Michele Tizzoni & Caterina Rizzo & Elisabetta Pandolfi & Ilaria Campagna & Alberto Eugenio Tozzi & Ciro Cattuto, 2018. "Close encounters between infants and household members measured through wearable proximity sensors," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-16, June.
    12. Christoph Stich & Emmanouil Tranos & Mirco Musolesi & Sune Lehmann, 2022. "The role of space, time and sociability in predicting social encounters," Environment and Planning B, , vol. 49(2), pages 619-636, February.
    13. Johannes Illenberger & Kai Nagel & Gunnar Flötteröd, 2013. "The Role of Spatial Interaction in Social Networks," Networks and Spatial Economics, Springer, vol. 13(3), pages 255-282, September.
    14. Maness, Michael & Cirillo, Cinzia & Dugundji, Elenna R., 2015. "Generalized behavioral framework for choice models of social influence: Behavioral and data concerns in travel behavior," Journal of Transport Geography, Elsevier, vol. 46(C), pages 137-150.
    15. Ma, Lu & Srinivasan, Sivaramakrishnan, 2016. "An empirical assessment of factors affecting the accuracy of target-year synthetic populations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 247-264.
    16. Bailey, Michael & Farrell, Patrick & Kuchler, Theresa & Stroebel, Johannes, 2020. "Social connectedness in urban areas," Journal of Urban Economics, Elsevier, vol. 118(C).
    17. Jun Sung Kim & Eleonora Patacchini & Pierre M. Picard & Yves Zenou, 2023. "Spatial interactions," Quantitative Economics, Econometric Society, vol. 14(4), pages 1295-1335, November.
    18. Andrew Bwambale & Charisma F. Choudhury & Stephane Hess & Md. Shahadat Iqbal, 2021. "Getting the best of both worlds: a framework for combining disaggregate travel survey data and aggregate mobile phone data for trip generation modelling," Transportation, Springer, vol. 48(5), pages 2287-2314, October.
    19. Bisin, Alberto & Moro, Andrea, 2022. "JUE insight: Learning epidemiology by doing: The empirical implications of a Spatial-SIR model with behavioral responses," Journal of Urban Economics, Elsevier, vol. 127(C).
    20. Farooq, Bilal & Bierlaire, Michel & Hurtubia, Ricardo & Flötteröd, Gunnar, 2013. "Simulation based population synthesis," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 243-263.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:13:y:2021:i:5:p:108-:d:543912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.