IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i4p574-d95419.html
   My bibliography  Save this article

Analysis of the Dynamic Evolutionary Behavior of American Heating Oil Spot and Futures Price Fluctuation Networks

Author

Listed:
  • Huan Chen

    (Energy Development and Environmental Protection Strategy Research Center, Jiangsu University, Zhenjiang 212013, China)

  • Lixin Tian

    (Energy Development and Environmental Protection Strategy Research Center, Jiangsu University, Zhenjiang 212013, China
    School of Mathematical Science, Nanjing Normal University, Nanjing 210042, China)

  • Minggang Wang

    (School of Mathematical Science, Nanjing Normal University, Nanjing 210042, China
    Department of Mathematics, Nanjing Normal University Taizhou College, Taizhou 225300, China)

  • Zaili Zhen

    (Energy Development and Environmental Protection Strategy Research Center, Jiangsu University, Zhenjiang 212013, China)

Abstract

Heating oil is an extremely important heating fuel to consumers in northeastern United States. This paper studies the fluctuations law and dynamic behavior of heating oil spot and futures prices by setting up their complex network models based on the data of America in recent 30 years. Firstly, modes are defined by the method of coarse graining, the spot price fluctuation network of heating oil (HSPFN) and its futures price fluctuation network (HFPFN) in different periods are established to analyze the transformation characteristics between the modes. Secondly, several indicators are investigated: average path length, node strength and strength distribution, betweeness, etc. In addition, a function is established to measure and analyze the network similarity. The results show the cumulative time of new nodes appearing in either spot or futures price network is not random but exhibits a growth trend of straight line. Meanwhile, the power law distributions of spot and futures price fluctuations in different periods present regularity and complexity. Moreover, these prices are strongly correlated in stable fluctuation period but weak in the phase of sharp fluctuation. Finally, the time distribution characteristics of important modes in the networks and the evolution results of the topological properties mentioned above are obtained.

Suggested Citation

  • Huan Chen & Lixin Tian & Minggang Wang & Zaili Zhen, 2017. "Analysis of the Dynamic Evolutionary Behavior of American Heating Oil Spot and Futures Price Fluctuation Networks," Sustainability, MDPI, vol. 9(4), pages 1-29, April.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:4:p:574-:d:95419
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/4/574/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/4/574/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Nairong & An, Haizhong & Hao, Xiaoqing & Feng, Sida, 2017. "The stability of the international heat pump trade pattern based on complex networks analysis," Applied Energy, Elsevier, vol. 196(C), pages 100-117.
    2. Menzie D. Chinn & Michael LeBlanc & Olivier Coibion, 2005. "The Predictive Content of Energy Futures: An Update on Petroleum, Natural Gas, Heating Oil and Gasoline," NBER Working Papers 11033, National Bureau of Economic Research, Inc.
    3. Hao, Xiaoqing & An, Haizhong & Qi, Hai & Gao, Xiangyun, 2016. "Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network," Applied Energy, Elsevier, vol. 162(C), pages 1515-1522.
    4. Amirnekooei, K. & Ardehali, M.M. & Sadri, A., 2017. "Optimal energy pricing for integrated natural gas and electric power network with considerations for techno-economic constraints," Energy, Elsevier, vol. 123(C), pages 693-709.
    5. Menzie D. Chinn & Olivier Coibion, 2014. "The Predictive Content of Commodity Futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(7), pages 607-636, July.
    6. An, Haizhong & Gao, Xiangyun & Fang, Wei & Ding, Yinghui & Zhong, Weiqiong, 2014. "Research on patterns in the fluctuation of the co-movement between crude oil futures and spot prices: A complex network approach," Applied Energy, Elsevier, vol. 136(C), pages 1067-1075.
    7. Jia, Xiaoliang & An, Haizhong & Sun, Xiaoqi & Huang, Xuan & Wang, Lijun, 2017. "Evolution of world crude oil market integration and diversification: A wavelet-based complex network perspective," Applied Energy, Elsevier, vol. 185(P2), pages 1788-1798.
    8. Yang, Yu & Poon, Jessie P.H. & Liu, Yi & Bagchi-Sen, Sharmistha, 2015. "Small and flat worlds: A complex network analysis of international trade in crude oil," Energy, Elsevier, vol. 93(P1), pages 534-543.
    9. Wang, Minggang & Chen, Ying & Tian, Lixin & Jiang, Shumin & Tian, Zihao & Du, Ruijin, 2016. "Fluctuation behavior analysis of international crude oil and gasoline price based on complex network perspective," Applied Energy, Elsevier, vol. 175(C), pages 109-127.
    10. Geng, Jiang-Bo & Ji, Qiang & Fan, Ying, 2014. "A dynamic analysis on global natural gas trade network," Applied Energy, Elsevier, vol. 132(C), pages 23-33.
    11. Sun, Mei & Wang, Yaqi & Gao, Cuixia, 2016. "Visibility graph network analysis of natural gas price: The case of North American market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1-11.
    12. Nagayama, Daisuke & Horita, Masahide, 2014. "A network game analysis of strategic interactions in the international trade of Russian natural gas through Ukraine and Belarus," Energy Economics, Elsevier, vol. 43(C), pages 89-101.
    13. Zhong, Weiqiong & An, Haizhong & Gao, Xiangyun & Sun, Xiaoqi, 2014. "The evolution of communities in the international oil trade network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 42-52.
    14. Zhang, Wen-Yao & Wei, Zong-Wen & Wang, Bing-Hong & Han, Xiao-Pu, 2016. "Measuring mixing patterns in complex networks by Spearman rank correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 440-450.
    15. Wang, Gang-Jin & Xie, Chi & Chen, Shou & Yang, Jiao-Jiao & Yang, Ming-Yan, 2013. "Random matrix theory analysis of cross-correlations in the US stock market: Evidence from Pearson’s correlation coefficient and detrended cross-correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3715-3730.
    16. Wang, Minggang & Tian, Lixin, 2016. "From time series to complex networks: The phase space coarse graining," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 456-468.
    17. Wang, Minggang & Tian, Lixin & Xu, Hua & Li, Weiyu & Du, Ruijin & Dong, Gaogao & Wang, Jie & Gu, Jiani, 2017. "Systemic risk and spatiotemporal dynamics of the consumer market of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 188-204.
    18. An, Haizhong & Zhong, Weiqiong & Chen, Yurong & Li, Huajiao & Gao, Xiangyun, 2014. "Features and evolution of international crude oil trade relationships: A trading-based network analysis," Energy, Elsevier, vol. 74(C), pages 254-259.
    19. Wang, Minggang & Tian, Lixin & Du, Ruijin, 2016. "Research on the interaction patterns among the global crude oil import dependency countries: A complex network approach," Applied Energy, Elsevier, vol. 180(C), pages 779-791.
    20. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    21. Hammoudeh, Shawkat & Li, Huimin & Jeon, Bang, 2003. "Causality and volatility spillovers among petroleum prices of WTI, gasoline and heating oil in different locations," The North American Journal of Economics and Finance, Elsevier, vol. 14(1), pages 89-114, March.
    22. Sun, Xiaoqi & An, Haizhong & Gao, Xiangyun & Jia, Xiaoliang & Liu, Xiaojia, 2016. "Indirect energy flow between industrial sectors in China: A complex network approach," Energy, Elsevier, vol. 94(C), pages 195-205.
    23. Castagneto-Gissey, G. & Chavez, M. & De Vico Fallani, F., 2014. "Dynamic Granger-causal networks of electricity spot prices: A novel approach to market integration," Energy Economics, Elsevier, vol. 44(C), pages 422-432.
    24. Giorgio Castagneto-Gissey & Mario Chavez & Fabrizio de Vico Fallani, 2014. "Dynamic Granger-causal networks of electricity spot prices: A novel approach to market integration," Post-Print hal-01023418, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen Zhang & Minggang Wang & Lixin Tian & Wenbin Zhang, 2017. "Research on the development efficiency of regional high-end talent in China: A complex network approach," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-18, December.
    2. Liexun Yang & Peng Zhou & Ning Zhang, 2017. "A Review of Low-Carbon Transformation and Energy Innovation Issues in China," Sustainability, MDPI, vol. 9(7), pages 1-6, July.
    3. Guangyong Zhang & Lixin Tian & Wenbin Zhang & Xu Yan & Bingyue Wan & Zaili Zhen, 2020. "A Study on the Similarities and Differences of the Conventional Gasoline Spot Price Fluctuation Network between Different Harbors," Sustainability, MDPI, vol. 12(2), pages 1-25, January.
    4. Chen, Weidong & Xiong, Shi & Chen, Quanyu, 2022. "Characterizing the dynamic evolutionary behavior of multivariate price movement fluctuation in the carbon-fuel energy markets system from complex network perspective," Energy, Elsevier, vol. 239(PA).
    5. Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    6. Wang, Minggang & Xu, Hua & Tian, Lixin & Eugene Stanley, H., 2018. "Degree distributions and motif profiles of limited penetrable horizontal visibility graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 620-634.
    7. Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.
    8. Lixin Tian & Huan Chen & Zaili Zhen, 2018. "Research on the forward-looking behavior judgment of heating oil price evolution based on complex networks," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangyong Zhang & Lixin Tian & Wenbin Zhang & Xu Yan & Bingyue Wan & Zaili Zhen, 2020. "A Study on the Similarities and Differences of the Conventional Gasoline Spot Price Fluctuation Network between Different Harbors," Sustainability, MDPI, vol. 12(2), pages 1-25, January.
    2. Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.
    3. Xi, Xian & Zhou, Jinsheng & Gao, Xiangyun & Liu, Donghui & Zheng, Huiling & Sun, Qingru, 2019. "Impact of changes in crude oil trade network patterns on national economy," Energy Economics, Elsevier, vol. 84(C).
    4. Sun, Qingru & Gao, Xiangyun & Zhong, Weiqiong & Liu, Nairong, 2017. "The stability of the international oil trade network from short-term and long-term perspectives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 345-356.
    5. Wang, Minggang & Xu, Hua & Tian, Lixin & Eugene Stanley, H., 2018. "Degree distributions and motif profiles of limited penetrable horizontal visibility graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 620-634.
    6. Peng, Peng & Yang, Yu & Cheng, Shifen & Lu, Feng & Yuan, Zimu, 2019. "Hub-and-spoke structure: Characterizing the global crude oil transport network with mass vessel trajectories," Energy, Elsevier, vol. 168(C), pages 966-974.
    7. Guan, Qing & An, Haizhong, 2017. "The exploration on the trade preferences of cooperation partners in four energy commodities’ international trade: Crude oil, coal, natural gas and photovoltaic," Applied Energy, Elsevier, vol. 203(C), pages 154-163.
    8. Shi, Jianglan & Li, Huajiao & Guan, Jianhe & Sun, Xiaoqi & Guan, Qing & Liu, Xiaojia, 2017. "Evolutionary features of global embodied energy flow between sectors: A complex network approach," Energy, Elsevier, vol. 140(P1), pages 395-405.
    9. Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    10. Wang, Minggang & Tian, Lixin & Zhou, Peng, 2018. "A novel approach for oil price forecasting based on data fluctuation network," Energy Economics, Elsevier, vol. 71(C), pages 201-212.
    11. Li, Xiaotong & Zhang, Hua & Zhou, Xuanru & Zhong, Weiqiong, 2022. "Research on the evolution of the global import and export competition network of chromium resources from the perspective of the whole industrial chain," Resources Policy, Elsevier, vol. 79(C).
    12. Zhang, Hongwei & Wang, Ying & Yang, Cai & Guo, Yaoqi, 2021. "The impact of country risk on energy trade patterns based on complex network and panel regression analyses," Energy, Elsevier, vol. 222(C).
    13. Zhong, Weiqiong & An, Haizhong & Shen, Lei & Fang, Wei & Gao, Xiangyun & Dong, Di, 2017. "The roles of countries in the international fossil fuel trade: An emergy and network analysis," Energy Policy, Elsevier, vol. 100(C), pages 365-376.
    14. Wang, Minggang & Chen, Ying & Tian, Lixin & Jiang, Shumin & Tian, Zihao & Du, Ruijin, 2016. "Fluctuation behavior analysis of international crude oil and gasoline price based on complex network perspective," Applied Energy, Elsevier, vol. 175(C), pages 109-127.
    15. Chen, B. & Li, J.S. & Wu, X.F. & Han, M.Y. & Zeng, L. & Li, Z. & Chen, G.Q., 2018. "Global energy flows embodied in international trade: A combination of environmentally extended input–output analysis and complex network analysis," Applied Energy, Elsevier, vol. 210(C), pages 98-107.
    16. Gao, Cuixia & Sun, Mei & Shen, Bo, 2015. "Features and evolution of international fossil energy trade relationships: A weighted multilayer network analysis," Applied Energy, Elsevier, vol. 156(C), pages 542-554.
    17. Zhong, Weiqiong & An, Haizhong & Shen, Lei & Dai, Tao & Fang, Wei & Gao, Xiangyun & Dong, Di, 2017. "Global pattern of the international fossil fuel trade: The evolution of communities," Energy, Elsevier, vol. 123(C), pages 260-270.
    18. Wang, Chunhui & Zhong, Weiqiong & Wang, Anjian & Sun, Xiaoqi & Li, Tianjiao & Wang, Xingxing, 2021. "Mapping the evolution of international antimony ores trade pattern based on complex network," Resources Policy, Elsevier, vol. 74(C).
    19. Xiaoyu Niu & Wei Chen & Nyuying Wang, 2023. "Spatiotemporal Dynamics and Topological Evolution of the Global Crude Oil Trade Network," Energies, MDPI, vol. 16(4), pages 1-18, February.
    20. Wang, Minggang & Tian, Lixin & Xu, Hua & Li, Weiyu & Du, Ruijin & Dong, Gaogao & Wang, Jie & Gu, Jiani, 2017. "Systemic risk and spatiotemporal dynamics of the consumer market of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 188-204.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:4:p:574-:d:95419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.