IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i12p1207-d83680.html
   My bibliography  Save this article

Adjustment and Optimization of the Cropping Systems under Water Constraint

Author

Listed:
  • Pingli An

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China)

  • Wei Ren

    (Department of Plant & Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40506, USA)

  • Xilin Liu

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China)

  • Mengmei Song

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China)

  • Xuemin Li

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China)

Abstract

The water constraint on agricultural production receives growing concern with the increasingly sharp contradiction between demand and supply of water resources. How to mitigate and adapt to potential water constraint is one of the key issues for ensuring food security and achieving sustainable agriculture in the context of climate change. It has been suggested that adjustment and optimization of cropping systems could be an effective measure to improve water management and ensure food security. However, a knowledge gap still exists in how to quantify potential water constraint and how to select appropriate cropping systems. Here, we proposed a concept of water constraint risk and developed an approach for the evaluation of the water constraint risks for agricultural production by performing a case study in Daxing District, Beijing, China. The results show that, over the whole growth period, the order of the water constraint risks of crops from high to low was wheat, rice, broomcorn, foxtail millet, summer soybean, summer peanut, spring corn, and summer corn, and the order of the water constraint risks of the cropping systems from high to low was winter wheat-summer grain crops, rice, broomcorn, foxtail millet, and spring corn. Our results are consistent with the actual evolving process of cropping system. This indicates that our proposed method is practicable to adjust and optimize the cropping systems to mitigate and adapt to potential water risks. This study provides an insight into the adjustment and optimization of cropping systems under resource constraints.

Suggested Citation

  • Pingli An & Wei Ren & Xilin Liu & Mengmei Song & Xuemin Li, 2016. "Adjustment and Optimization of the Cropping Systems under Water Constraint," Sustainability, MDPI, vol. 8(12), pages 1-11, November.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:12:p:1207-:d:83680
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/12/1207/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/12/1207/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gordon, Line J. & Finlayson, C. Max & Falkenmark, Malin, 2010. "Managing water in agriculture for food production and other ecosystem services," Agricultural Water Management, Elsevier, vol. 97(4), pages 512-519, April.
    2. Li, Lei & Chi, Ting & Wang, Shi, 2016. "Is energy utilization among Chinese provinces sustainable?," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 198-206.
    3. de Fraiture, Charlotte & Wichelns, Dennis, 2010. "Satisfying future water demands for agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 502-511, April.
    4. de Fraiture, Charlotte & Molden, David & Wichelns, Dennis, 2010. "Investing in water for food, ecosystems, and livelihoods: An overview of the comprehensive assessment of water management in agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 495-501, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Jianmei & Shen, Yanjun & Qi, Yongqing & Zhang, Yucui & Xiao, Dengpan, 2018. "Evaluating water conservation effects due to cropping system optimization on the Beijing-Tianjin-Hebei plain, China," Agricultural Systems, Elsevier, vol. 159(C), pages 32-41.
    2. Ren, Pinpin & Huang, Feng & Li, Baoguo, 2022. "Spatiotemporal patterns of water consumption and irrigation requirements of wheat-maize in the Huang-Huai-Hai Plain, China and options of their reduction," Agricultural Water Management, Elsevier, vol. 263(C).
    3. Liuyue He & Sufen Wang & Congcong Peng & Qian Tan, 2018. "Optimization of Water Consumption Distribution Based on Crop Suitability in the Middle Reaches of Heihe River," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    4. Pandey, Adya & Bolia, Nomesh B., 2023. "Millet value chain revolution for sustainability: A proposal for India," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    2. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    3. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    4. Sun, Haoyang & Wang, Sufen & Hao, Xinmei, 2017. "An Improved Analytic Hierarchy Process Method for the evaluation of agricultural water management in irrigation districts of north China," Agricultural Water Management, Elsevier, vol. 179(C), pages 324-337.
    5. Finger, Robert, 2012. "Modeling the sensitivity of agricultural water use to price variability and climate change—An application to Swiss maize production," Agricultural Water Management, Elsevier, vol. 109(C), pages 135-143.
    6. Pradeep Dogra & V. Sharda & P. Ojasvi & Shiv Prasher & R. Patel, 2014. "Compromise Programming Based Model for Augmenting Food Production with Minimum Water Allocation in a Watershed: a Case Study in the Indian Himalayas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5247-5265, December.
    7. van Halsema, Gerardo E. & Vincent, Linden, 2012. "Efficiency and productivity terms for water management: A matter of contextual relativism versus general absolutism," Agricultural Water Management, Elsevier, vol. 108(C), pages 9-15.
    8. de Fraiture, Charlotte & Molden, David & Wichelns, Dennis, 2010. "Investing in water for food, ecosystems, and livelihoods: An overview of the comprehensive assessment of water management in agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 495-501, April.
    9. Vote, Camilla & Eberbach, Philip & Inthavong, Thavone & Lampayan, Rubenito M. & Vongthilard, Somsamay & Wade, Len J., 2019. "Quantification of an overlooked water resource in the tropical rainfed lowlands using RapidEye satellite data: A case of farm ponds and the potential gross value for smallholder production in southern," Agricultural Water Management, Elsevier, vol. 212(C), pages 111-118.
    10. Lu, Zhixiang & Wei, Yongping & Xiao, Honglang & Zou, Songbing & Ren, Juan & Lyle, Clive, 2015. "Trade-offs between midstream agricultural production and downstream ecological sustainability in the Heihe River basin in the past half century," Agricultural Water Management, Elsevier, vol. 152(C), pages 233-242.
    11. Dennis Wichelns, 2015. "Achieving Water and Food Security in 2050: Outlook, Policies, and Investments," Agriculture, MDPI, vol. 5(2), pages 1-33, April.
    12. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.
    13. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    14. Liu, Jing & Hertel, Thomas & Lammers, Richard & Prusevich, Alexander & Baldos, Uris Lantz & Grogan, Danielle & Frolking, Steve, 2016. "Achieving Sustainable Irrigation Water Withdrawals: Global Impacts on Food Production and Land Use," Conference papers 332691, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    15. Simoncini, Riccardo & Ring, Irene & Sandström, Camilla & Albert, Christian & Kasymov, Ulan & Arlettaz, Raphael, 2019. "Constraints and opportunities for mainstreaming biodiversity and ecosystem services in the EU’s Common Agricultural Policy: Insights from the IPBES assessment for Europe and Central Asia," Land Use Policy, Elsevier, vol. 88(C).
    16. Jacqueline M. Vadjunec & Amy E. Frazier & Peter Kedron & Todd Fagin & Yun Zhao, 2018. "A Land Systems Science Framework for Bridging Land System Architecture and Landscape Ecology: A Case Study from the Southern High Plains," Land, MDPI, vol. 7(1), pages 1-20, February.
    17. Yaofeng Yang & Yajuan Chen & Zhenrong Yu & Pengyao Li & Xuedong Li, 2020. "How Does Improve Farmers’ Attitudes toward Ecosystem Services to Support Sustainable Development of Agriculture? Based on Environmental Kuznets Curve Theory," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
    18. Lee, Seung Oh & Jung, Younghun, 2018. "Efficiency of water use and its implications for a water-food nexus in the Aral Sea Basin," Agricultural Water Management, Elsevier, vol. 207(C), pages 80-90.
    19. Tiffany L. Fess & James B. Kotcon & Vagner A. Benedito, 2011. "Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population," Sustainability, MDPI, vol. 3(10), pages 1-31, October.
    20. Karimi, Azadeh & Yazdandad, Hossein & Fagerholm, Nora, 2020. "Evaluating social perceptions of ecosystem services, biodiversity, and land management: Trade-offs, synergies and implications for landscape planning and management," Ecosystem Services, Elsevier, vol. 45(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:12:p:1207-:d:83680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.