IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v212y2019icp111-118.html
   My bibliography  Save this article

Quantification of an overlooked water resource in the tropical rainfed lowlands using RapidEye satellite data: A case of farm ponds and the potential gross value for smallholder production in southern Laos

Author

Listed:
  • Vote, Camilla
  • Eberbach, Philip
  • Inthavong, Thavone
  • Lampayan, Rubenito M.
  • Vongthilard, Somsamay
  • Wade, Len J.

Abstract

In southern Laos, water stored in farm ponds is largely underutilised as it is perceived to be unfit for human consumption; subsequently, groundwater is the preferred source for domestic and agricultural consumption. For the first time, this paper presents the results of a study designed to quantify the total pond water volume within the landscape via remote-sensing methods in two districts in Champasak province that could be used to improve rural household cash income through the expansion of market-oriented dry season crop production. Water bodies were delineated via simple classification of RapidEye data using the Normalised Difference Water Index and a sub-classification was performed to distinguish between ponds and the streamflow network. Final estimates of total pond volume in Sukhuma and Phonthong districts were ∼2.30 × 106 m3 and 3.55 × 106 m3, respectively; and the average pond volume across both districts was ∼1987 m3. Sensitivity analysis of the potential gross value of farm ponds for irrigation of dry season, vegetable production typical of market-oriented smallholder activities in the area indicated that substantial gross economic gains could be made from better use and management of these resources.

Suggested Citation

  • Vote, Camilla & Eberbach, Philip & Inthavong, Thavone & Lampayan, Rubenito M. & Vongthilard, Somsamay & Wade, Len J., 2019. "Quantification of an overlooked water resource in the tropical rainfed lowlands using RapidEye satellite data: A case of farm ponds and the potential gross value for smallholder production in southern," Agricultural Water Management, Elsevier, vol. 212(C), pages 111-118.
  • Handle: RePEc:eee:agiwat:v:212:y:2019:i:c:p:111-118
    DOI: 10.1016/j.agwat.2018.08.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418312290
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.08.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeffrey D. Sachs, 2001. "Tropical Underdevelopment," NBER Working Papers 8119, National Bureau of Economic Research, Inc.
    2. Camilla Vote & Jonathan Newby & Khamphou Phouyyavong & Thavone Inthavong & Philip Eberbach, 2015. "Trends and perceptions of rural household groundwater use and the implications for smallholder agriculture in rain-fed Southern Laos," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 31(4), pages 558-574, December.
    3. de Fraiture, Charlotte & Wichelns, Dennis, 2010. "Satisfying future water demands for agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 502-511, April.
    4. Gordon C. McCord & Jeffrey D. Sachs, 2013. "Development, Structure, and Transformation: Some Evidence on Comparative Economic Growth," NBER Working Papers 19512, National Bureau of Economic Research, Inc.
    5. Wani, S. P. & Sreedevi, T. K. & Rockstrom, J. & Ramakrishna, Y. S., 2009. "Rainfed agriculture: past trends and future prospects," IWMI Books, Reports H041990, International Water Management Institute.
    6. de Fraiture, Charlotte & Karlberg, L. & Rockstrom, J., 2009. "Can rainfed agriculture feed the world?: an assessment of potentials and risk," IWMI Books, Reports H041744, International Water Management Institute.
    7. Klaus Deininger & Derek Byerlee & Jonathan Lindsay & Andrew Norton & Harris Selod & Mercedes Stickler, 2011. "Rising Global Interest in Farmland : Can it Yield Sustainable and Equitable Benefits?," World Bank Publications - Books, The World Bank Group, number 2263, December.
    8. de Fraiture, Charlotte & Molden, David & Wichelns, Dennis, 2010. "Investing in water for food, ecosystems, and livelihoods: An overview of the comprehensive assessment of water management in agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 495-501, April.
    9. Newby, J.C. & Manivong, Vongpaphane & Cramb, R.A., 2013. "Intensification of lowland rice-based farming systems in Laos in the context of diversified rural livelihoods," 2013 Conference (57th), February 5-8, 2013, Sydney, Australia 152172, Australian Agricultural and Resource Economics Society.
    10. Rockström, Johan & Karlberg, Louise & Wani, Suhas P. & Barron, Jennie & Hatibu, Nuhu & Oweis, Theib & Bruggeman, Adriana & Farahani, Jalali & Qiang, Zhu, 2010. "Managing water in rainfed agriculture--The need for a paradigm shift," Agricultural Water Management, Elsevier, vol. 97(4), pages 543-550, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariem Baccar & Jacques-Eric Bergez & Stephane Couture & Muddu Sekhar & Laurent Ruiz & Delphine Leenhardt, 2021. "Building Climate Change Adaptation Scenarios with Stakeholders for Water Management: A Hybrid Approach Adapted to the South Indian Water Crisis," Sustainability, MDPI, vol. 13(15), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    2. Getnet, Kindie & MacAlister, Charlotte, 2012. "Integrated innovations and recommendation domains: Paradigm for developing, scaling-out, and targeting rainwater management innovations," Ecological Economics, Elsevier, vol. 76(C), pages 34-41.
    3. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    4. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    5. Guanchun Liu & Chien-Chiang Lee & Yuanyuan Liu, 2020. "Growth path heterogeneity across provincial economies in China: the role of geography versus institutions," Empirical Economics, Springer, vol. 59(2), pages 503-546, August.
    6. María Blanco & Benjamin Van Doorslaer & Wolfgang Britz & Heinz-Peter Witzke, 2012. "Exploring the feasibility of integrating water issues into the CAPRI model," JRC Research Reports JRC77058, Joint Research Centre.
    7. Elke Noellemeyer & Romina Fernández & Alberto Quiroga, 2013. "Crop and Tillage Effects on Water Productivity of Dryland Agriculture in Argentina," Agriculture, MDPI, vol. 3(1), pages 1-11, January.
    8. van Halsema, Gerardo E. & Vincent, Linden, 2012. "Efficiency and productivity terms for water management: A matter of contextual relativism versus general absolutism," Agricultural Water Management, Elsevier, vol. 108(C), pages 9-15.
    9. Sidibe, Y. & Williams, T.O., 2018. "A comparative analysis of water pricing options on two large-scale irrigation schemes in West Africa," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 276017, International Association of Agricultural Economists.
    10. de Fraiture, Charlotte & Molden, David & Wichelns, Dennis, 2010. "Investing in water for food, ecosystems, and livelihoods: An overview of the comprehensive assessment of water management in agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 495-501, April.
    11. Wani, Suhas P. & Anantha, K.H. & Garg, Kaushal K., 2017. "Soil Properties, Crop Yield, and Economics Under Integrated Crop Management Practices in Karnataka, Southern India," World Development, Elsevier, vol. 93(C), pages 43-61.
    12. Dennis Wichelns, 2015. "Achieving Water and Food Security in 2050: Outlook, Policies, and Investments," Agriculture, MDPI, vol. 5(2), pages 1-33, April.
    13. Pingli An & Wei Ren & Xilin Liu & Mengmei Song & Xuemin Li, 2016. "Adjustment and Optimization of the Cropping Systems under Water Constraint," Sustainability, MDPI, vol. 8(12), pages 1-11, November.
    14. Facon, T. & Mukherji, Aditi, 2010. "Small-scale irrigation: is this the future?," Conference Papers h043372, International Water Management Institute.
    15. Alexander, Kim S. & Parry, Lucy & Thammavong, Phomma & Sacklokham, Silinthone & Pasouvang, Somphanh & Connell, John G. & Jovanovic, Tom & Moglia, Magnus & Larson, Silva & Case, Peter, 2018. "Rice farming systems in Southern Lao PDR: Interpreting farmers’ agricultural production decisions using Q methodology," Agricultural Systems, Elsevier, vol. 160(C), pages 1-10.
    16. Pradeep Dogra & V. Sharda & P. Ojasvi & Shiv Prasher & R. Patel, 2014. "Compromise Programming Based Model for Augmenting Food Production with Minimum Water Allocation in a Watershed: a Case Study in the Indian Himalayas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5247-5265, December.
    17. Rabah Arezki & Klaus Deininger & Harris Selod, 2015. "What Drives the Global "Land Rush"?," The World Bank Economic Review, World Bank, vol. 29(2), pages 207-233.
    18. Ola Olsson, 2005. "Geography and institutions: Plausible and implausible linkages," Journal of Economics, Springer, vol. 10(1), pages 167-194, December.
    19. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.
    20. Klaus Deininger & Denys Nizalov & Sudhir K Singh, 2013. "Are mega-farms the future of global agriculture? Exploring the farm size-productivity relationship for large commercial farms in Ukraine," Discussion Papers 49, Kyiv School of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:212:y:2019:i:c:p:111-118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.