IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v3y2013i1p1-11d22625.html
   My bibliography  Save this article

Crop and Tillage Effects on Water Productivity of Dryland Agriculture in Argentina

Author

Listed:
  • Elke Noellemeyer

    (College of Agriculture, National University of La Pampa, Santa Rosa, L.P., Argentina)

  • Romina Fernández

    (College of Agriculture, National University of La Pampa, Santa Rosa, L.P., Argentina
    National Institute for Agricultural Technology, Experimental Station "Guillermo Covas", Anguil, L.P., Argentina)

  • Alberto Quiroga

    (College of Agriculture, National University of La Pampa, Santa Rosa, L.P., Argentina
    National Institute for Agricultural Technology, Experimental Station "Guillermo Covas", Anguil, L.P., Argentina)

Abstract

Rising demands for food and uncertainties about climate change call for a paradigm shift in water management with a stronger focus on rainfed agriculture. The objective here was to estimate water productivity of different crops under no-till (NT) and conventional till (CT), in order to identify rotations that improve the water productivity of dryland agriculture. We hypothesized that NT and cereal crops would have a positive effect on overall water productivity. Crop yield and water use data were obtained from a 15 year experiment (1993 to 2008) on an entic Haplustoll in the semiarid Pampa, Argentina, with a rotation of wheat ( Triticum aestivum L.), corn ( Zea mays L.), sunflower ( Helianthus annus ), and soybean ( Glycine max L. Merr.) . The results indicated an improved water productivity of all crops under NT compared with that of CT; however, the response of cereals (corn +1.0 kg ha −1 mm −1 , wheat +1.3 kg ha −1 mm −1 ) was higher than that of sunflower (+0.3 kg ha −1 mm −1 ) and soybean (+0.5 kg ha −1 mm −1 ). Crop type had a higher impact on water productivity than did tillage system. In agreement with our hypothesis, cereal crops were more efficient (corn 9.8 and wheat 6.9 kg ha −1 mm −1 ) compared with soybean 2.4 and sunflower 3.9 kg mm −1 , but the economic water productivity of sunflower (0.9 US$ ha −1 mm −1 ) almost equaled that of wheat (1.1 US$ ha −1 mm −1 ) and corn (1.2 US$ ha −1 mm −1 ). We concluded that the use of the synergy between NT and water efficient crops could be a promising step towards improving food production in semiarid regions.

Suggested Citation

  • Elke Noellemeyer & Romina Fernández & Alberto Quiroga, 2013. "Crop and Tillage Effects on Water Productivity of Dryland Agriculture in Argentina," Agriculture, MDPI, vol. 3(1), pages 1-11, January.
  • Handle: RePEc:gam:jagris:v:3:y:2013:i:1:p:1-11:d:22625
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/3/1/1/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/3/1/1/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Passioura, John, 2006. "Increasing crop productivity when water is scarce--from breeding to field management," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 176-196, February.
    2. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    3. Alletto, Lionel & Coquet, Yves & Justes, Eric, 2011. "Effects of tillage and fallow period management on soil physical behaviour and maize development," Agricultural Water Management, Elsevier, vol. 102(1), pages 74-85.
    4. Fernandez, Romina & Quiroga, Alberto & Noellemeyer, Elke & Funaro, Daniel & Montoya, Jorgelina & Hitzmann, Bernd & Peinemann, Norman, 2008. "A study of the effect of the interaction between site-specific conditions, residue cover and weed control on water storage during fallow," Agricultural Water Management, Elsevier, vol. 95(9), pages 1028-1040, September.
    5. Moret, D. & Arrue, J.L. & Lopez, M.V. & Gracia, R., 2006. "Influence of fallowing practices on soil water and precipitation storage efficiency in semiarid Aragon (NE Spain)," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 161-176, April.
    6. de Fraiture, Charlotte & Molden, David & Wichelns, Dennis, 2010. "Investing in water for food, ecosystems, and livelihoods: An overview of the comprehensive assessment of water management in agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 495-501, April.
    7. Rockström, Johan & Karlberg, Louise & Wani, Suhas P. & Barron, Jennie & Hatibu, Nuhu & Oweis, Theib & Bruggeman, Adriana & Farahani, Jalali & Qiang, Zhu, 2010. "Managing water in rainfed agriculture--The need for a paradigm shift," Agricultural Water Management, Elsevier, vol. 97(4), pages 543-550, April.
    8. Bossio, Deborah & Geheb, Kim & Critchley, William, 2010. "Managing water by managing land: Addressing land degradation to improve water productivity and rural livelihoods," Agricultural Water Management, Elsevier, vol. 97(4), pages 536-542, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Jinli & Hu, Wei & Wu, Jicheng & Yang, Yonghui & Feng, Hao, 2020. "Simulating the effects of conventional versus conservation tillage on soil water, nitrogen dynamics, and yield of winter wheat with RZWQM2," Agricultural Water Management, Elsevier, vol. 230(C).
    2. Shokoofeh Sarikhani Khorami & Seyed Abdolreza Kazemeini & Sadegh Afzalinia & Mahesh Kumar Gathala, 2018. "Changes in Soil Properties and Productivity under Different Tillage Practices and Wheat Genotypes: A Short-Term Study in Iran," Sustainability, MDPI, vol. 10(9), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krauß, Michael & Kraatz, Simone & Drastig, Katrin & Prochnow, Annette, 2015. "The influence of dairy management strategies on water productivity of milk production," Agricultural Water Management, Elsevier, vol. 147(C), pages 175-186.
    2. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    3. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    4. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," Book Chapters,, International Water Management Institute.
    5. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," IWMI Books, Reports H046807, International Water Management Institute.
    6. de Fraiture, Charlotte & Molden, David & Wichelns, Dennis, 2010. "Investing in water for food, ecosystems, and livelihoods: An overview of the comprehensive assessment of water management in agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 495-501, April.
    7. Chimonyo, V.G.P. & Modi, A.T. & Mabhaudhi, T., 2016. "Water use and productivity of a sorghum–cowpea–bottle gourd intercrop system," Agricultural Water Management, Elsevier, vol. 165(C), pages 82-96.
    8. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    9. Liu, Jing & Hertel, Thomas & Lammers, Richard & Prusevich, Alexander & Baldos, Uris Lantz & Grogan, Danielle & Frolking, Steve, 2016. "Achieving Sustainable Irrigation Water Withdrawals: Global Impacts on Food Production and Land Use," Conference papers 332691, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    10. Feng Huang & Baoguo Li, 2020. "What is the Redline Water Withdrawal for Crop Production in China?—Projection to 2030 Derived from the Past Twenty-Year Trajectory," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    11. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    12. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    13. van Halsema, Gerardo E. & Vincent, Linden, 2012. "Efficiency and productivity terms for water management: A matter of contextual relativism versus general absolutism," Agricultural Water Management, Elsevier, vol. 108(C), pages 9-15.
    14. Lecina, S. & Isidoro, D. & Playán, E. & Aragüés, R., 2010. "Irrigation modernization and water conservation in Spain: The case of Riegos del Alto Aragón," Agricultural Water Management, Elsevier, vol. 97(10), pages 1663-1675, October.
    15. Vote, Camilla & Eberbach, Philip & Inthavong, Thavone & Lampayan, Rubenito M. & Vongthilard, Somsamay & Wade, Len J., 2019. "Quantification of an overlooked water resource in the tropical rainfed lowlands using RapidEye satellite data: A case of farm ponds and the potential gross value for smallholder production in southern," Agricultural Water Management, Elsevier, vol. 212(C), pages 111-118.
    16. Kun Cheng & Qiang Fu & Tianxiao Li & Qiuxiang Jiang & Wei Liu, 2015. "Regional food security risk assessment under the coordinated development of water resources," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 603-619, August.
    17. Girma, Anteneh & Kassie, Menale & Bauer, Siegfried & Aurbacher, Joachim, 2015. "Integrated land and water management practices for rainwater harvesting: Joint estimation on the combined use of the practices in Azgo watershed, Ethiopia," 2015 Conference, August 9-14, 2015, Milan, Italy 211685, International Association of Agricultural Economists.
    18. Shuhong Wang & Ning Yin & Zhihai Yang, 2021. "Factors affecting sustained adoption of irrigation water-saving technologies in groundwater over-exploited areas in the North China Plain," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10528-10546, July.
    19. Facon, T. & Mukherji, Aditi, 2010. "Small-scale irrigation: is this the future?," Conference Papers h043372, International Water Management Institute.
    20. Descheemaeker, K. & Bunting, S. W. & Bindraban, P. & Muthuri, C. & Molden, D. & Beveridge, M. & van Brakel, Martin & Herrero, M. & Clement, Floriane & Boelee, Eline & Jarvis, D. I., 2013. "Increasing water productivity in Agriculture," Book Chapters,, International Water Management Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:3:y:2013:i:1:p:1-11:d:22625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.