IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v78y2015i1p603-619.html
   My bibliography  Save this article

Regional food security risk assessment under the coordinated development of water resources

Author

Listed:
  • Kun Cheng
  • Qiang Fu
  • Tianxiao Li
  • Qiuxiang Jiang
  • Wei Liu

Abstract

Agricultural water use plays an important role in maintaining food security. The present paper utilizes an agent-based model of the complex adaptive systems (CAS) theory for the dynamic simulation of four water resource utilization plans and was able to forecast the per capita food share, per capita income and water security rate under three climatic conditions in Heilongjiang Province, China, in 2020. The forecasts were performed under the broad principle of coordinated regional development and based on Heilongjiang’s food production, water resources and population data 2003–2010. The measured data for Heilongjiang Province in 2011 were used to perform joint risk analyses of the forecast results. The results showed that the comprehensive plan combining technological innovation and policy control provides the best method of achieving food security under the three climatic conditions. However, compared to maintaining the status quo, this combination plan decreases by approximately 8 % under the three climatic conditions, but the per capita share of food and the rate of water security increase to over 10 and 20 %, respectively. Therefore, to further reduce the pressure on water resources in Heilongjiang Province and to lessen the impact of climate on food production, advanced technology and policy regulations should be increasingly integrated into various industries to ensure the sustainable supply of regional water resources for food production. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Kun Cheng & Qiang Fu & Tianxiao Li & Qiuxiang Jiang & Wei Liu, 2015. "Regional food security risk assessment under the coordinated development of water resources," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 603-619, August.
  • Handle: RePEc:spr:nathaz:v:78:y:2015:i:1:p:603-619
    DOI: 10.1007/s11069-015-1735-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1735-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1735-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Turral, Hugh & Svendsen, Mark & Faures, Jean Marc, 2010. "Investing in irrigation: Reviewing the past and looking to the future," Agricultural Water Management, Elsevier, vol. 97(4), pages 551-560, April.
    2. Nyakudya, Innocent Wadzanayi & Stroosnijder, Leo & Nyagumbo, Isaiah, 2014. "Infiltration and planting pits for improved water management and maize yield in semi-arid Zimbabwe," Agricultural Water Management, Elsevier, vol. 141(C), pages 30-46.
    3. Wenjiao Shi & Fulu Tao, 2014. "Spatio-temporal distributions of climate disasters and the response of wheat yields in China from 1983 to 2008," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 569-583, November.
    4. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    5. Rutten, Martine & van Dijk, Michiel & van Rooij, Wilbert & Hilderink, Henk, 2014. "Land Use Dynamics, Climate Change, and Food Security in Vietnam: A Global-to-local Modeling Approach," World Development, Elsevier, vol. 59(C), pages 29-46.
    6. Santos, Florence & Fletschner, Diana & Savath, Vivien & Peterman, Amber, 2013. "Can government-allocated land contribute to food security? Intrahousehold analysis of West Bengal’s microplot allocation program:," IFPRI discussion papers 1310, International Food Policy Research Institute (IFPRI).
    7. Lauren Gies & Datu Agusdinata & Venkatesh Merwade, 2014. "Drought adaptation policy development and assessment in East Africa using hydrologic and system dynamics modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 789-813, November.
    8. Bessembinder, J.J.E. & Leffelaar, P.A. & Dhindwal, A.S. & Ponsioen, T.C., 2005. "Which crop and which drop, and the scope for improvement of water productivity," Agricultural Water Management, Elsevier, vol. 73(2), pages 113-130, May.
    9. Brooks, Jonathan, 2014. "Policy coherence and food security: The effects of OECD countries’ agricultural policies," Food Policy, Elsevier, vol. 44(C), pages 88-94.
    10. Qadir, M. & Wichelns, D. & Raschid-Sally, L. & McCornick, P.G. & Drechsel, P. & Bahri, A. & Minhas, P.S., 2010. "The challenges of wastewater irrigation in developing countries," Agricultural Water Management, Elsevier, vol. 97(4), pages 561-568, April.
    11. Santos, Florence & Fletschner, Diana & Savath, Vivien & Peterman, Amber, 2014. "Can Government-Allocated Land Contribute to Food Security? Intrahousehold Analysis of West Bengal’s Microplot Allocation Program," World Development, Elsevier, vol. 64(C), pages 860-872.
    12. Enliang Guo & Jiquan Zhang & Xuehui Ren & Qi Zhang & Zhongyi Sun, 2014. "Integrated risk assessment of flood disaster based on improved set pair analysis and the variable fuzzy set theory in central Liaoning Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 947-965, November.
    13. Z. Popova & M. Ivanova & D. Martins & L. Pereira & K. Doneva & V. Alexandrov & M. Kercheva, 2014. "Vulnerability of Bulgarian agriculture to drought and climate variability with focus on rainfed maize systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 865-886, November.
    14. World Bank, 2006. "Reengaging in Agricultural Water Management: Challenges and Options," World Bank Publications - Books, The World Bank Group, number 6957, December.
    15. Breisinger, Clemens & Ecker, Olivier, 2014. "Simulating economic growth effects on food and nutrition security in Yemen: A new macro–micro modeling approach," Economic Modelling, Elsevier, vol. 43(C), pages 100-113.
    16. Mariano, Marc Jim M. & Giesecke, James A., 2014. "The macroeconomic and food security implications of price interventions in the Philippine rice market," Economic Modelling, Elsevier, vol. 37(C), pages 350-361.
    17. de Fraiture, Charlotte & Molden, David & Wichelns, Dennis, 2010. "Investing in water for food, ecosystems, and livelihoods: An overview of the comprehensive assessment of water management in agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 495-501, April.
    18. van Wijk, Mark T., 2014. "From global economic modelling to household level analyses of food security and sustainability: How big is the gap and can we bridge it?," Food Policy, Elsevier, vol. 49(P2), pages 378-388.
    19. Sharma, Bharat R. & Rao, K.V. & Vittal, K.P.R. & Ramakrishna, Y.S. & Amarasinghe, U., 2010. "Estimating the potential of rainfed agriculture in India: Prospects for water productivity improvements," Agricultural Water Management, Elsevier, vol. 97(1), pages 23-30, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicholson, Charles F. & Stephens, Emma C. & Kopainsky, Birgit & Jones, Andrew D. & Parsons, David & Garrett, James, 2021. "Food security outcomes in agricultural systems models: Current status and recommended improvements," Agricultural Systems, Elsevier, vol. 188(C).
    2. Kun Cheng & Qiang Fu & Song Cui & Tian-xiao Li & Wei Pei & Dong Liu & Jun Meng, 2017. "Evaluation of the land carrying capacity of major grain-producing areas and the identification of risk factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 263-280, March.
    3. Zhang, Biao & Fu, Zetian & Wang, Jieqiong & Zhang, Lingxian, 2019. "Farmers’ adoption of water-saving irrigation technology alleviates water scarcity in metropolis suburbs: A case study of Beijing, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 349-357.
    4. Wenyuan Jiang & Zhenxiang Zeng & Zhengyun Zhang & Yichen Zhao, 2022. "Regulation and Optimization of Urban Water and Land Resources Utilization for Low Carbon Development: A Case Study of Tianjin, China," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    5. Qiang Fu & Ye Liu & Tianxiao Li & Dong Liu & Song Cui, 2017. "Analysis of Irrigation Water Use Efficiency Based on the Chaos Features of a Rainfall Time Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 1961-1973, April.
    6. Nicholas R. Magliocca, 2020. "Agent-Based Modeling for Integrating Human Behavior into the Food–Energy–Water Nexus," Land, MDPI, vol. 9(12), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    2. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    3. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    4. Lecina, S. & Isidoro, D. & Playán, E. & Aragüés, R., 2010. "Irrigation modernization and water conservation in Spain: The case of Riegos del Alto Aragón," Agricultural Water Management, Elsevier, vol. 97(10), pages 1663-1675, October.
    5. Facon, T. & Mukherji, Aditi, 2010. "Small-scale irrigation: is this the future?," Conference Papers h043372, International Water Management Institute.
    6. de Fraiture, Charlotte & Molden, David & Wichelns, Dennis, 2010. "Investing in water for food, ecosystems, and livelihoods: An overview of the comprehensive assessment of water management in agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 495-501, April.
    7. Dennis Wichelns, 2015. "Achieving Water and Food Security in 2050: Outlook, Policies, and Investments," Agriculture, MDPI, vol. 5(2), pages 1-33, April.
    8. Kelly Sharp & Hisham Zerriffi & Philippe Billon, 2020. "Land scarcity, resettlement and food security: Assessing the effect of voluntary resettlement on diet quality in Malawi," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(1), pages 191-205, February.
    9. Liu, Jing & Hertel, Thomas & Lammers, Richard & Prusevich, Alexander & Baldos, Uris Lantz & Grogan, Danielle & Frolking, Steve, 2016. "Achieving Sustainable Irrigation Water Withdrawals: Global Impacts on Food Production and Land Use," Conference papers 332691, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    10. Constanza Gonzalez Parrao & Marta Moratti & Shannon Shisler & Birte Snilstveit & John Eyers, 2021. "PROTOCOL: Aquaculture for improving productivity, income, nutrition and women's empowerment in low‐ and middle‐income countries: A systematic review and meta‐analysis," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(3), September.
    11. Reed, W. Robert, 2019. "Takeaways from the special issue on The Practice of Replication," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 13, pages 1-11.
    12. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," IWMI Books, Reports H046807, International Water Management Institute.
    13. Yokying, Phanwin & Lambrecht, Isabel, 2020. "Landownership and the gender gap in agriculture: Insights from northern Ghana," Land Use Policy, Elsevier, vol. 99(C).
    14. Vu, Ha Thu & Goto, Daisaku, 2020. "Does awareness about land tenure security (LTS) increase investments in agriculture? Evidence from rural households in Vietnam," Land Use Policy, Elsevier, vol. 97(C).
    15. Abebaw, Degnet & Admassie, Assefa & Kassa, Habtemariam & Padoch, Christine, 2020. "Can rural outmigration improve household food security? Empirical evidence from Ethiopia," World Development, Elsevier, vol. 129(C).
    16. Galeana-Pizaña, J. Mauricio & Couturier, Stéphane & Figueroa, Daniela & Jiménez, Aldo Daniel, 2021. "Is rural food security primarily associated with smallholder agriculture or with commercial agriculture?: An approach to the case of Mexico using structural equation modeling," Agricultural Systems, Elsevier, vol. 190(C).
    17. Sun, Haoyang & Wang, Sufen & Hao, Xinmei, 2017. "An Improved Analytic Hierarchy Process Method for the evaluation of agricultural water management in irrigation districts of north China," Agricultural Water Management, Elsevier, vol. 179(C), pages 324-337.
    18. Shuhong Wang & Ning Yin & Zhihai Yang, 2021. "Factors affecting sustained adoption of irrigation water-saving technologies in groundwater over-exploited areas in the North China Plain," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10528-10546, July.
    19. Constanza Gonzalez Parrao & Shannon Shisler & Marta Moratti & Cem Yavuz & Arnab Acharya & John Eyers & Birte Snilstveit, 2021. "Aquaculture for improving productivity, income, nutrition and women's empowerment in low‐ and middle‐income countries: A systematic review and meta‐analysis," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(4), December.
    20. Hyland,Marie Caitriona,Islam,Asif Mohammed, 2021. "Gendered Laws, Informal Origins, and Subsequent Performance," Policy Research Working Paper Series 9766, The World Bank.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:78:y:2015:i:1:p:603-619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.