IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v74y2014i2p865-886.html
   My bibliography  Save this article

Vulnerability of Bulgarian agriculture to drought and climate variability with focus on rainfed maize systems

Author

Listed:
  • Z. Popova
  • M. Ivanova
  • D. Martins
  • L. Pereira
  • K. Doneva
  • V. Alexandrov
  • M. Kercheva

Abstract

Bulgarian agriculture is affected by droughts and, likely, by climate change. Thus, aiming at assessing its vulnerability, this study includes a general characterization of climate variability in eight selected locations, both in northern and southern Bulgaria. Trend tests were applied to monthly precipitation, maximum and minimum temperature and to the Standardized Precipitation Index with two-month time step (SPI-2) relative to the period of 1951–2004. Negative trends were identified for precipitation and SPI-2 at various locations, mainly in the Thrace Plain, indicating that dryness is likely to be increasing in Bulgaria. The vulnerability of rainfed maize systems to drought was studied using the previously calibrated WinISAREG model and the Stewart’s yield model to compute both the relative yield decrease (RYD) due to water stress and the corresponding net irrigation required to overcome those losses. Results identified a strong relation between SPI-2 for July–August (SPI-2 July–Aug ) and RYD. Results also show that yield losses are higher when the soils have a smaller soil water holding capacity. For the various regions under study, thresholds for RYD were defined considering the related economic impacts and the influence of soil characteristics on the vulnerability of the rainfed maize systems. Finally, to support drought risk management, SPI-2 July–Aug thresholds were developed to be used as indicators of the economic risk of rainfed maize for various climate regions and soil groups in Bulgaria. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Z. Popova & M. Ivanova & D. Martins & L. Pereira & K. Doneva & V. Alexandrov & M. Kercheva, 2014. "Vulnerability of Bulgarian agriculture to drought and climate variability with focus on rainfed maize systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 865-886, November.
  • Handle: RePEc:spr:nathaz:v:74:y:2014:i:2:p:865-886
    DOI: 10.1007/s11069-014-1215-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1215-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1215-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ana Paulo & Luis Pereira, 2008. "Stochastic Prediction of Drought Class Transitions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(9), pages 1277-1296, September.
    2. Majumder, Rajarshi & Ray, Jhilam & Sen, Anindita, 2013. "Social Sector Development in South West Bengal," MPRA Paper 48745, University Library of Munich, Germany.
    3. F. Sönmez & Ali Kömüscü & Ayhan Erkan & Ertan Turgu, 2005. "An Analysis of Spatial and Temporal Dimension of Drought Vulnerability in Turkey Using the Standardized Precipitation Index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 35(2), pages 243-264, June.
    4. Popova, Zornitsa & Pereira, Luis S., 2011. "Modelling for maize irrigation scheduling using long term experimental data from Plovdiv region, Bulgaria," Agricultural Water Management, Elsevier, vol. 98(4), pages 675-683, February.
    5. Liu, Y. & Teixeira, J. L. & Zhang, H. J. & Pereira, L. S., 1998. "Model validation and crop coefficients for irrigation scheduling in the North China plain," Agricultural Water Management, Elsevier, vol. 36(3), pages 233-246, April.
    6. Olga Wilhelmi & Donald Wilhite, 2002. "Assessing Vulnerability to Agricultural Drought: A Nebraska Case Study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 25(1), pages 37-58, January.
    7. Tayeb Raziei & Bahram Saghafian & Ana Paulo & Luis Pereira & Isabella Bordi, 2009. "Spatial Patterns and Temporal Variability of Drought in Western Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 439-455, February.
    8. Hong Wu & Donald Wilhite, 2004. "An Operational Agricultural Drought Risk Assessment Model for Nebraska, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(1), pages 1-21, September.
    9. Oecd, 2009. "Climate Change and Africa," OECD Journal: General Papers, OECD Publishing, vol. 2009(1), pages 5-35.
    10. Rodrigues, Gonçalo C. & Paredes, Paula & Gonçalves, José M. & Alves, Isabel & Pereira, Luis S., 2013. "Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling: Ranking for water saving vs. farm economic returns," Agricultural Water Management, Elsevier, vol. 126(C), pages 85-96.
    11. Zhiqiang Wang & Fei He & Weihua Fang & Yongfeng Liao, 2013. "Assessment of physical vulnerability to agricultural drought in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 645-657, June.
    12. Sergio Vicente-Serrano, 2006. "Differences in Spatial Patterns of Drought on Different Time Scales: An Analysis of the Iberian Peninsula," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(1), pages 37-60, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kun Cheng & Qiang Fu & Tianxiao Li & Qiuxiang Jiang & Wei Liu, 2015. "Regional food security risk assessment under the coordinated development of water resources," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 603-619, August.
    2. Paredes, Paula & Rodrigues, Gonçalo C. & Cameira, Maria do Rosário & Torres, Maria Odete & Pereira, Luis S., 2017. "Assessing yield, water productivity and farm economic returns of malt barley as influenced by the sowing dates and supplemental irrigation," Agricultural Water Management, Elsevier, vol. 179(C), pages 132-143.
    3. Seguini, L. & Bussay, A. & Baruth, B., 2019. "From extreme weather to impacts: The role of the areas of concern maps in the JRC MARS bulletin," Agricultural Systems, Elsevier, vol. 168(C), pages 213-223.
    4. Piyush Dahal & Nicky Shree Shrestha & Madan Lall Shrestha & Nir Y. Krakauer & Jeeban Panthi & Soni M. Pradhanang & Ajay Jha & Tarendra Lakhankar, 2016. "Drought risk assessment in central Nepal: temporal and spatial analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1913-1932, February.
    5. Piyush Dahal & Nicky Shrestha & Madan Shrestha & Nir Krakauer & Jeeban Panthi & Soni Pradhanang & Ajay Jha & Tarendra Lakhankar, 2016. "Drought risk assessment in central Nepal: temporal and spatial analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1913-1932, February.
    6. Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javad Bazrafshan & Somayeh Hejabi & Jaber Rahimi, 2014. "Drought Monitoring Using the Multivariate Standardized Precipitation Index (MSPI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1045-1060, March.
    2. Tayeb Raziei & Isabella Bordi & Luis Pereira, 2011. "An Application of GPCC and NCEP/NCAR Datasets for Drought Variability Analysis in Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1075-1086, March.
    3. Itziar González Tánago & Julia Urquijo & Veit Blauhut & Fermín Villarroya & Lucia De Stefano, 2016. "Learning from experience: a systematic review of assessments of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 951-973, January.
    4. Yaojie Yue & Jian Li & Xinyue Ye & Zhiqiang Wang & A-Xing Zhu & Jing-ai Wang, 2015. "An EPIC model-based vulnerability assessment of wheat subject to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1629-1652, September.
    5. P. Vijaya Kumar & Mohammed Osman & P. K. Mishra, 2019. "Development and application of a new drought severity index for categorizing drought-prone areas: a case study of undivided Andhra Pradesh state, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 793-812, June.
    6. G. Buttafuoco & T. Caloiero & R. Coscarelli, 2015. "Analyses of Drought Events in Calabria (Southern Italy) Using Standardized Precipitation Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 557-573, January.
    7. Itziar González Tánago & Julia Urquijo & Veit Blauhut & Fermín Villarroya & Lucia De Stefano, 2016. "Learning from experience: a systematic review of assessments of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 951-973, January.
    8. Lina Eklund & Jonathan Seaquist, 2015. "Meteorological, agricultural and socioeconomic drought in the Duhok Governorate, Iraqi Kurdistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 421-441, March.
    9. Shamsuddin Shahid & Houshang Behrawan, 2008. "Drought risk assessment in the western part of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(3), pages 391-413, September.
    10. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    11. Jing Wang & Feng Fang & Qiang Zhang & Jinsong Wang & Yubi Yao & Wei Wang, 2016. "Risk evaluation of agricultural disaster impacts on food production in southern China by probability density method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1605-1634, September.
    12. Yong SHI, 2018. "Assessment of Agricultural Vulnerability to Floods in Shanghai by the DEA Method," Chinese Journal of Urban and Environmental Studies (CJUES), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-11, March.
    13. Sergio Vicente-Serrano, 2007. "Evaluating the Impact of Drought Using Remote Sensing in a Mediterranean, Semi-arid Region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(1), pages 173-208, January.
    14. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    15. Zhu, Xiufang & Xu, Kun & Liu, Ying & Guo, Rui & Chen, Lingyi, 2021. "Assessing the vulnerability and risk of maize to drought in China based on the AquaCrop model," Agricultural Systems, Elsevier, vol. 189(C).
    16. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    17. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    18. Nadir Elagib, 2015. "Drought risk during the early growing season in Sahelian Sudan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1549-1566, December.
    19. Yaohuan Huang & Chen Xu & Haijun Yang & Jianhua Wang & Dong Jiang & Chuanpeng Zhao, 2015. "Temporal and Spatial Variability of Droughts in Southwest China from 1961 to 2012," Sustainability, MDPI, vol. 7(10), pages 1-13, October.
    20. Muhammad Ashraf & Jayant Routray & Muhammad Saeed, 2014. "Determinants of farmers’ choice of coping and adaptation measures to the drought hazard in northwest Balochistan, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1451-1473, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:74:y:2014:i:2:p:865-886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.