IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v3y2011i2p322-362d11190.html
   My bibliography  Save this article

The Carbon and Global Warming Potential Impacts of Organic Farming: Does It Have a Significant Role in an Energy Constrained World?

Author

Listed:
  • Derek H. Lynch

    (Department Plant and Animal Sciences, Nova Scotia Agricultural College, P.O. Box 550, Truro, NS B2N 5E3, Canada)

  • Rod MacRae

    (Faculty of Environmental Studies, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada)

  • Ralph C. Martin

    (Organic Agriculture Centre of Canada, Nova Scotia Agricultural College, P.O. Box 550, Truro, NS B2N 5E3, Canada)

Abstract

About 130 studies were analyzed to compare farm-level energy use and global warming potential (GWP) of organic and conventional production sectors. Cross cutting issues such as tillage, compost, soil carbon sequestration and energy offsets were also reviewed. Finally, we contrasted E and GWP data from the wider food system. We concluded that the evidence strongly favours organic farming with respect to whole-farm energy use and energy efficiency both on a per hectare and per farm product basis, with the possible exception of poultry and fruit sectors. For GWP, evidence is insufficient except in a few sectors, with results per ha more consistently favouring organic farming than GWP per unit product. Tillage was consistently a negligible contributor to farm E use and additional tillage on organic farms does not appear to significantly deplete soil C. Energy offsets, biogas, energy crops and residues have a more limited role on organic farms compared to conventional ones, because of the nutrient and soil building uses of soil organic matter, and the high demand for organic foods in human markets. If farm E use represents 35% of total food chain E use, improvements shown of 20% or more in E efficiency through organic farm management would reduce food-chain E use by 7% or more. Among other food supply chain stages, wholesale/retail (including cooling and packaging) and processing often each contribute 30% or more to total food system E. Thus, additional improvements can be obtained with reduced processing, whole foods and food waste minimization.

Suggested Citation

  • Derek H. Lynch & Rod MacRae & Ralph C. Martin, 2011. "The Carbon and Global Warming Potential Impacts of Organic Farming: Does It Have a Significant Role in an Energy Constrained World?," Sustainability, MDPI, vol. 3(2), pages 1-41, January.
  • Handle: RePEc:gam:jsusta:v:3:y:2011:i:2:p:322-362:d:11190
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/3/2/322/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/3/2/322/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlsson-Kanyama, Annika, 1998. "Climate change and dietary choices -- how can emissions of greenhouse gases from food consumption be reduced?," Food Policy, Elsevier, vol. 23(3-4), pages 277-293, November.
    2. Peters, Christian & Bills, Nelson L. & Wilkins, Jennifer & Smith, R. David, 2003. "Fruit Consumption, Dietary Guidelines, And Agricultural Production In New York State -- Implications For Local Food Economies," Research Bulletins 122109, Cornell University, Department of Applied Economics and Management.
    3. Thomassen, M.A. & van Calker, K.J. & Smits, M.C.J. & Iepema, G.L. & de Boer, I.J.M., 2008. "Life cycle assessment of conventional and organic milk production in the Netherlands," Agricultural Systems, Elsevier, vol. 96(1-3), pages 95-107, March.
    4. Wood, Richard & Lenzen, Manfred & Dey, Christopher & Lundie, Sven, 2006. "A comparative study of some environmental impacts of conventional and organic farming in Australia," Agricultural Systems, Elsevier, vol. 89(2-3), pages 324-348, September.
    5. Peters, Christian & Bills, Nelson L. & Wilkins, Jennifer & Smith, R. David, 2002. "Vegetable Consumption, Dietary Guidelines and Agricultural Production in New York State—Implications for Local Food Economies," Research Bulletins 122636, Cornell University, Department of Applied Economics and Management.
    6. John P. Reganold & Jerry D. Glover & Preston K. Andrews & Herbert R. Hinman, 2001. "Sustainability of three apple production systems," Nature, Nature, vol. 410(6831), pages 926-930, April.
    7. Crystal Snyder & Dean Spaner, 2010. "The Sustainability of Organic Grain Production on the Canadian Prairies—A Review," Sustainability, MDPI, vol. 2(4), pages 1-19, April.
    8. Vergé, X.P.C. & Dyer, J.A. & Desjardins, R.L. & Worth, D., 2008. "Greenhouse gas emissions from the Canadian beef industry," Agricultural Systems, Elsevier, vol. 98(2), pages 126-134, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bartłomiej Bajan & Aldona Mrówczyńska-Kamińska & Walenty Poczta, 2020. "Economic Energy Efficiency of Food Production Systems," Energies, MDPI, vol. 13(21), pages 1-16, November.
    2. Sean Clark, 2020. "Organic Farming and Climate Change: The Need for Innovation," Sustainability, MDPI, vol. 12(17), pages 1-7, August.
    3. Bruce, Analena B. & Farmer, James R. & Giroux, Stacey & Dickinson, Stephanie & Chen, Xiwei & Donnell, Michael O. & Benjamin, Tamara J., 2022. "Opportunities and barriers to certified organic grain production on rented farmland in the U.S. Midwest state of Indiana," Land Use Policy, Elsevier, vol. 122(C).
    4. Jinyan Zhan & Haiming Yan & Bin Chen & Jiao Luo & Nana Shi, 2012. "Decomposition Analysis of the Mechanism Behind the Spatial and Temporal Patterns of Changes in Carbon Bio-Sequestration in China," Energies, MDPI, vol. 5(2), pages 1-13, February.
    5. Andreas Aigner & Robert Wilken & Sylvie Geisendorf, 2019. "The Effectiveness of Promotional Cues for Organic Products in the German Retail Market," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
    6. Bartłomiej Bajan & Joanna Łukasiewicz & Aldona Mrówczyńska-Kamińska, 2021. "Energy Consumption and Its Structures in Food Production Systems of the Visegrad Group Countries Compared with EU-15 Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    7. Sarah Rotz, 2018. "Drawing lines in the cornfield: an analysis of discourse and identity relations across agri-food networks," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 35(2), pages 441-456, June.
    8. Lauren C. Ponisio & Paul R. Ehrlich, 2016. "Diversification, Yield and a New Agricultural Revolution: Problems and Prospects," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    9. Alfredo J. Escribano, 2018. "Organic Feed: A Bottleneck for the Development of the Livestock Sector and Its Transition to Sustainability?," Sustainability, MDPI, vol. 10(7), pages 1-18, July.
    10. Lynch, Derek H., 2015. "Nutrient Cycling and Soil Health in Organic Cropping Systems - Importance of Management Strategies and Soil Resilience," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 4(3 Special).
    11. Rod MacRae & Michelle Szabo & Kalli Anderson & Fiona Louden & Sandi Trillo, 2012. "Empowering the Citizen-Consumer: Re-Regulating Consumer Information to Support the Transition to Sustainable and Health Promoting Food Systems in Canada," Sustainability, MDPI, vol. 4(9), pages 1-30, September.
    12. Aimee N. Hafla & Jennifer W. MacAdam & Kathy J. Soder, 2013. "Sustainability of US Organic Beef and Dairy Production Systems: Soil, Plant and Cattle Interactions," Sustainability, MDPI, vol. 5(7), pages 1-26, July.
    13. Caroline Brock & Douglas Jackson-Smith & Subbu Kumarappan & Steve Culman & Cathy Herms & Douglas Doohan, 2021. "Organic Corn Production Practices and Profitability in the Eastern U.S. Corn Belt," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    14. Muller, Adrian & Olesen, Joergen & Smith, Laurence & Davis, Joan & Dytrtová, Karolína & Gattinger, Andreas & Lampkin, Nic & Niggli, Urs, 2012. "Reducing Global Warming and Adapting to Climate Change: The Potential of Organic Agriculture," Working Papers in Economics 526, University of Gothenburg, Department of Economics.
    15. Feliu López-i-Gelats & Jordi Bartolomé Filella, 2020. "Examining the role of organic production schemes in Mediterranean pastoralism," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5771-5792, August.
    16. Schramski, J.R. & Jacobsen, K.L. & Smith, T.W. & Williams, M.A. & Thompson, T.M., 2013. "Energy as a potential systems-level indicator of sustainability in organic agriculture: Case study model of a diversified, organic vegetable production system," Ecological Modelling, Elsevier, vol. 267(C), pages 102-114.
    17. Siegmeier, Torsten & Blumenstein, Benjamin & Möller, Detlev, 2015. "Farm biogas production in organic agriculture: System implications," Agricultural Systems, Elsevier, vol. 139(C), pages 196-209.
    18. Gabriel Cucui & Constantin Aurelian Ionescu & Ioana Raluca Goldbach & Mihaela Denisa Coman & Elena Liliana Moiceanu Marin, 2018. "Quantifying the Economic Effects of Biogas Installations for Organic Waste from Agro-Industrial Sector," Sustainability, MDPI, vol. 10(7), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pelletier, N., 2008. "Environmental performance in the US broiler poultry sector: Life cycle energy use and greenhouse gas, ozone depleting, acidifying and eutrophying emissions," Agricultural Systems, Elsevier, vol. 98(2), pages 67-73, September.
    2. Wood, Richard & Lenzen, Manfred & Dey, Christopher & Lundie, Sven, 2006. "A comparative study of some environmental impacts of conventional and organic farming in Australia," Agricultural Systems, Elsevier, vol. 89(2-3), pages 324-348, September.
    3. Alon Tal, 2018. "Making Conventional Agriculture Environmentally Friendly: Moving beyond the Glorification of Organic Agriculture and the Demonization of Conventional Agriculture," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    4. Nijdam, Durk & Rood, Trudy & Westhoek, Henk, 2012. "The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes," Food Policy, Elsevier, vol. 37(6), pages 760-770.
    5. Pedro Henrique Presumido & Fernando Sousa & Artur Gonçalves & Tatiane Cristina Dal Bosco & Manuel Feliciano, 2018. "Environmental Impacts of the Beef Production Chain in the Northeast of Portugal Using Life Cycle Assessment," Agriculture, MDPI, vol. 8(10), pages 1-19, October.
    6. Tiffany L. Fess & Vagner A. Benedito, 2018. "Organic versus Conventional Cropping Sustainability: A Comparative System Analysis," Sustainability, MDPI, vol. 10(1), pages 1-42, January.
    7. Ellen Desjardins & Rod MacRae & Theresa Schumilas, 2010. "Linking future population food requirements for health with local production in Waterloo Region, Canada," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 27(2), pages 129-140, June.
    8. Henrik Saxe & Thomas Larsen & Lisbeth Mogensen, 2013. "The global warming potential of two healthy Nordic diets compared with the average Danish diet," Climatic Change, Springer, vol. 116(2), pages 249-262, January.
    9. Simone Blanc & Stefano Massaglia & Filippo Brun & Cristiana Peano & Angela Mosso & Nicole Roberta Giuggioli, 2019. "Use of Bio-Based Plastics in the Fruit Supply Chain: An Integrated Approach to Assess Environmental, Economic, and Social Sustainability," Sustainability, MDPI, vol. 11(9), pages 1-18, April.
    10. Jongeneel, Roel & Polman, Nico & van der Ham, Corinda, 2014. "Costs and benefits associated with the externalities generated by Dutch agriculture," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182705, European Association of Agricultural Economists.
    11. Jan Willem Erisman & Allison Leach & Albert Bleeker & Brooke Atwell & Lia Cattaneo & James Galloway, 2018. "An Integrated Approach to a Nitrogen Use Efficiency (NUE) Indicator for the Food Production–Consumption Chain," Sustainability, MDPI, vol. 10(4), pages 1-29, March.
    12. Bonamigo, Andrei & Ferenhof, Helio Aisenberg & Forcellini, Fernando Antonio, 2017. "Dairy Ecosystem Barriers Exposed - A Case Study In A Family Production Unit At Western Santa Catarina, Brazil," Organizações Rurais e Agroindustriais/Rural and Agro-Industrial Organizations, Universidade Federal de Lavras, Departamento de Administracao e Economia, vol. 19(1), January.
    13. Martina Schäfer & Melanie Jaeger-Erben & Aguinaldo Santos, 2011. "Leapfrogging to Sustainable Consumption? An Explorative Survey of Consumption Habits and Orientations in Southern Brazil," Journal of Consumer Policy, Springer, vol. 34(1), pages 175-196, March.
    14. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    15. Kraatz, Simone, 2012. "Energy intensity in livestock operations – Modeling of dairy farming systems in Germany," Agricultural Systems, Elsevier, vol. 110(C), pages 90-106.
    16. Franks, Jeremy & Frater, Poppy, 2013. "Measuring agricultural sustainability at the farm-level: A pragmatic approach," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 2(4), pages 1-19, July.
    17. Tuomisto, H.L. & Hodge, I.D. & Riordan, P. & Macdonald, D.W., 2012. "Comparing energy balances, greenhouse gas balances and biodiversity impacts of contrasting farming systems with alternative land uses," Agricultural Systems, Elsevier, vol. 108(C), pages 42-49.
    18. Suzanne Kapelari & Georgios Alexopoulos & Theano Moussouri & Konstantin J. Sagmeister & Florian Stampfer, 2020. "Food Heritage Makes a Difference: The Importance of Cultural Knowledge for Improving Education for Sustainable Food Choices," Sustainability, MDPI, vol. 12(4), pages 1-23, February.
    19. Stylianou, Andreas & Sdrali, Despina & Apostolopoulos, Constantinos D., 2020. "Capturing the diversity of Mediterranean farming systems prior to their sustainability assessment: The case of Cyprus," Land Use Policy, Elsevier, vol. 96(C).
    20. Ledgard, Stewart F. & Wei, Sha & Wang, Xiaoqin & Falconer, Shelley & Zhang, Nannan & Zhang, Xiying & Ma, Lin, 2019. "Nitrogen and carbon footprints of dairy farm systems in China and New Zealand, as influenced by productivity, feed sources and mitigations," Agricultural Water Management, Elsevier, vol. 213(C), pages 155-163.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:3:y:2011:i:2:p:322-362:d:11190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.