IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p6744-d1125302.html
   My bibliography  Save this article

Dynamic Equilibrium of Sustainable Ecosystem Variables: An Experiment

Author

Listed:
  • Marcos Gonçalves Perroni

    (Graduate Program in Administration, Pontifical Catholic University of Parana, Imaculada Conceição 1155, Curitiba 80215-901, PR, Brazil)

  • Claudimar Pereira da Veiga

    (Business School, Fundação Dom Cabral, Av. Princesa Diana, 760 Alphaville, Lagoa dos Ingleses, Nova Lima 34018-006, MG, Brazil)

  • Zhaohui Su

    (School of Public Health, Institute for Human Rights, Southeast University, Nanjing 210009, China)

  • Fernando Maciel Ramos

    (Senac College, Pres. João Zanardi Ave, 330, Nossa Sra. da Salete, Concórdia 89700-396, SC, Brazil)

  • Wesley Vieira da Silva

    (Faculty of Economics, Administration and Accounting, Federal University of Alagoas (UFAL), Lourival de Melo Mota Ave, s/n, University City, Maceió 57072-900, AL, Brazil)

Abstract

Developing indicators to monitor the dynamic equilibrium of sustainable ecosystem variables has been challenging for policymakers, companies, and researchers. The new method matrix decomposition analysis (MDA) is an adaptation of the Leontief input–output equations for the disaggregated structural decomposition of key performance indicators (KPI). The main problem that this work addresses is related to the behavior of MDA when compared to traditional methodologies such as data envelopment analysis (DEA) and stochastic frontier analysis (SFA). Can MDA be considered robust enough for wide applicability? To compare the models, we developed a methodology called marginal exponentiation experiments. This approach is a type of simulation that raises the inputs and outputs of an entity to a marginal power, thus making it possible to compare a large number of models with the same data. RMarkdown was used for methodological operationalization, wherein data science steps are coded in specific chunks, applying a layered process with modeling. The comparison between the models is operationalized in layers using techniques such as descriptive statistics, correlation, cluster, and linear discriminant analysis (LDA). Given the results, we argue that MDA is a Leontief partial equilibrium model that produces indicators with dual interpretation, enabling the measurement of the dynamic equilibrium of sustainable ecosystem variables. Furthermore, the method offers a new ranking system that detects relative changes in the use of resources correlated with efficiency analysis. The practical value for decision-makers relates to the fact that we found evidence that MDA can be considered robust enough to identify whether a given ecosystem is in equilibrium and that the excessive use of resources or abnormal productivity can cause instability.

Suggested Citation

  • Marcos Gonçalves Perroni & Claudimar Pereira da Veiga & Zhaohui Su & Fernando Maciel Ramos & Wesley Vieira da Silva, 2023. "Dynamic Equilibrium of Sustainable Ecosystem Variables: An Experiment," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6744-:d:1125302
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/6744/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/6744/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joe Zhu, 2014. "Quantitative Models for Performance Evaluation and Benchmarking," International Series in Operations Research and Management Science, Springer, edition 3, number 978-3-319-06647-9, September.
    2. Seunghwa Rho & Peter Schmidt, 2015. "Are all firms inefficient?," Journal of Productivity Analysis, Springer, vol. 43(3), pages 327-349, June.
    3. Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Zhou, P. & Ang, B.W. & Zhou, D.Q., 2012. "Measuring economy-wide energy efficiency performance: A parametric frontier approach," Applied Energy, Elsevier, vol. 90(1), pages 196-200.
    6. Perroni, Marcos G. & Gouvea da Costa, Sergio E. & Pinheiro de Lima, Edson & Vieira da Silva, Wesley & Tortato, Ubiratã, 2018. "Measuring energy performance: A process based approach," Applied Energy, Elsevier, vol. 222(C), pages 540-553.
    7. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    8. Joe Zhu, 2014. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, edition 3, chapter 1, pages 1-9, Springer.
    9. Daraio, Cinzia & Kerstens, Kristiaan & Nepomuceno, Thyago & Sickles, Robin C., 2019. "Empirical Surveys of Frontier Applications: A Meta-Review," Working Papers 19-005, Rice University, Department of Economics.
    10. Oh, Seog-Chan & Shin, Jaemin, 2015. "The impact of mismeasurement in performance benchmarking: A Monte Carlo comparison of SFA and DEA with different multi-period budgeting strategies," European Journal of Operational Research, Elsevier, vol. 240(2), pages 518-527.
    11. Garrett Grolemund & Hadley Wickham, 2014. "A Cognitive Interpretation of Data Analysis," International Statistical Review, International Statistical Institute, vol. 82(2), pages 184-204, August.
    12. Vito Albino & Erik Dietzenbacher & Silvana Kuhtz, 2003. "Analysing Materials and Energy Flows in an Industrial District using an Enterprise Input-Output Model," Economic Systems Research, Taylor & Francis Journals, vol. 15(4), pages 457-480.
    13. Cullinane, Kevin & Wang, Teng-Fei & Song, Dong-Wook & Ji, Ping, 2006. "The technical efficiency of container ports: Comparing data envelopment analysis and stochastic frontier analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(4), pages 354-374, May.
    14. Honma, Satoshi & Hu, Jin-Li, 2014. "A panel data parametric frontier technique for measuring total-factor energy efficiency: An application to Japanese regions," Energy, Elsevier, vol. 78(C), pages 732-739.
    15. Hassini, Elkafi & Surti, Chirag & Searcy, Cory, 2012. "A literature review and a case study of sustainable supply chains with a focus on metrics," International Journal of Production Economics, Elsevier, vol. 140(1), pages 69-82.
    16. James Odeck, 2007. "Measuring technical efficiency and productivity growth: a comparison of SFA and DEA on Norwegian grain production data," Applied Economics, Taylor & Francis Journals, vol. 39(20), pages 2617-2630.
    17. H. Fried & C. Lovell & S. Schmidt & S. Yaisawarng, 2002. "Accounting for Environmental Effects and Statistical Noise in Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 17(1), pages 157-174, January.
    18. Lin, Xiannuan & Polenske, Karen R., 1998. "Input--output modeling of production processes for business management," Structural Change and Economic Dynamics, Elsevier, vol. 9(2), pages 205-226, June.
    19. Timothy J. Coelli & D.S. Prasada Rao & Christopher J. O’Donnell & George E. Battese, 2005. "An Introduction to Efficiency and Productivity Analysis," Springer Books, Springer, edition 0, number 978-0-387-25895-9, December.
    20. Brandt, Patric & Ernst, Anna & Gralla, Fabienne & Luederitz, Christopher & Lang, Daniel J. & Newig, Jens & Reinert, Florian & Abson, David J. & von Wehrden, Henrik, 2013. "A review of transdisciplinary research in sustainability science," Ecological Economics, Elsevier, vol. 92(C), pages 1-15.
    21. Reinhard, Stijn & Knox Lovell, C. A. & Thijssen, Geert J., 2000. "Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA," European Journal of Operational Research, Elsevier, vol. 121(2), pages 287-303, March.
    22. Kuhtz, Silvana & Zhou, Chaoying & Albino, Vito & Yazan, Devrim M., 2010. "Energy use in two Italian and Chinese tile manufacturers: A comparison using an enterprise input–output model," Energy, Elsevier, vol. 35(1), pages 364-374.
    23. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    24. Fethi, Meryem Duygun & Pasiouras, Fotios, 2010. "Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey," European Journal of Operational Research, Elsevier, vol. 204(2), pages 189-198, July.
    25. Tsujimoto, Masaharu & Kajikawa, Yuya & Tomita, Junichi & Matsumoto, Yoichi, 2018. "A review of the ecosystem concept — Towards coherent ecosystem design," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 49-58.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perroni, Marcos G. & Gouvea da Costa, Sergio E. & Pinheiro de Lima, Edson & Vieira da Silva, Wesley & Tortato, Ubiratã, 2018. "Measuring energy performance: A process based approach," Applied Energy, Elsevier, vol. 222(C), pages 540-553.
    2. Honma, Satoshi & Ushifusa, Yoshiaki & Okamura, Soyoka & Vandercamme, Lilu, 2023. "Measuring carbon emissions performance of Japan's metal industry: Energy inputs, agglomeration, and the potential for green recovery reduction," Resources Policy, Elsevier, vol. 82(C).
    3. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    4. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    5. Liu, Fengqin & Sim, Jae-yeon & Sun, Huaping & Edziah, Bless Kofi & Adom, Philip Kofi & Song, Shunfeng, 2023. "Assessing the role of economic globalization on energy efficiency: Evidence from a global perspective," China Economic Review, Elsevier, vol. 77(C).
    6. Van Meensel, Jef & Lauwers, Ludwig & Van Huylenbroeck, Guido & Van Passel, Steven, 2010. "Comparing frontier methods for economic-environmental trade-off analysis," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1027-1040, December.
    7. Ahn, Heinz & Clermont, Marcel & Langner, Julia, 2023. "Comparative performance analysis of frontier-based efficiency measurement methods – A Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 307(1), pages 294-312.
    8. Otsuka, Akihiro, 2023. "Industrial electricity consumption efficiency and energy policy in Japan," Utilities Policy, Elsevier, vol. 81(C).
    9. Rendao Ye & Yue Qi & Wenyan Zhu, 2023. "Impact of Agricultural Industrial Agglomeration on Agricultural Environmental Efficiency in China: A Spatial Econometric Analysis," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    10. repec:cmj:journl:y:2013:i:27:popovicimc is not listed on IDEAS
    11. Hang Xiong, 2012. "Effects of One-Sided Fiscal Decentralization on Environmental Efficiency of Chinese Provinces," Working Papers halshs-00672450, HAL.
    12. Iparraguirre, José Luis & Ma, Ruosi, 2015. "Efficiency in the provision of social care for older people. A three-stage Data Envelopment Analysis using self-reported quality of life," Socio-Economic Planning Sciences, Elsevier, vol. 49(C), pages 33-46.
    13. Hang Xiong, 2012. "Effects of One-Sided Fiscal Decentralization on Environmental Efficiency of Chinese Provinces," CERDI Working papers halshs-00672450, HAL.
    14. Mark A. Andor & David H. Bernstein & Stephan Sommer, 2021. "Determining the efficiency of residential electricity consumption," Empirical Economics, Springer, vol. 60(6), pages 2897-2923, June.
    15. Hang XIONG, 2012. "Effects of One-Sided Fiscal Decentralization on Environmental Efficiency of Chinese Provinces," Working Papers 201208, CERDI.
    16. Mihăiță-Cosmin M. POPOVICI, 2013. "A Survey On Bank Efficiency Research With Data Envelopment Analysis And Stochastic Frontier Analysis," SEA - Practical Application of Science, Romanian Foundation for Business Intelligence, Editorial Department, issue 1, pages 134-142, June.
    17. Marcel Clermont & Julia Schaefer, 2019. "Identification of Outliers in Data Envelopment Analysis," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 71(4), pages 475-496, October.
    18. Thiago Victorino & Carlos Rosano Peña, 2023. "The Development of Efficiency Analysis in Transportation Systems: A Bibliometric and Systematic Review," Sustainability, MDPI, vol. 15(13), pages 1-32, June.
    19. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    20. Tovar, Beatriz & Wall, Alan, 2015. "Can ports increase traffic while reducing inputs? Technical efficiency of Spanish Port Authorities using a directional distance function approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 128-140.
    21. Vaneet Bhatia & Sankarshan Basu & Subrata Kumar Mitra & Pradyumna Dash, 2018. "A review of bank efficiency and productivity," OPSEARCH, Springer;Operational Research Society of India, vol. 55(3), pages 557-600, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6744-:d:1125302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.