IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4145-d1079975.html
   My bibliography  Save this article

Climate Change Vulnerability, Adaptation, and Feedback Hypothesis: A Comparison of Lower-Middle, Upper-Middle, and High-Income Countries

Author

Listed:
  • Sahrish Saeed

    (Department of Economics, Government College University Faisalabad, Faisalabad 38000, Pakistan)

  • Muhammad Sohail Amjad Makhdum

    (Department of Economics, Government College University Faisalabad, Faisalabad 38000, Pakistan)

  • Sofia Anwar

    (Department of Economics, Government College University Faisalabad, Faisalabad 38000, Pakistan)

  • Muhammad Rizwan Yaseen

    (Department of Economics, Government College University Faisalabad, Faisalabad 38000, Pakistan)

Abstract

Governments and policymakers are increasingly concerned about climate change. To cope with this inevitable issue, the SDGs-13 target underscores the importance of developing adaptation measures that reduce its adverse effects and ultimately safeguard both society and the environment. This issue is critical in developing countries, which are unable to counter climate-related risks because they lack adaptive capacity, suitable infrastructure, technology and, most importantly, human and physical capital. By contrast, resource-endowed developed countries have succeeded in integrating adaptative and protective policies into their developmental agenda using human power, technology, and especially investment. Keeping these facts in mind, this study is framed to examine the nexus between climate change, adaptation measures, and economic development across different income groups (lower-middle, upper-middle, and high income), using the Driscoll–Kraay (D/K) standard errors method for panel data from the period of 1995 to 2020. This study incorporates two indices (i.e., adaptive capacity and adaptation readiness) in the adaptation framework. The results demonstrate that developed countries such as Australia, Austria, Belgium, Canada, Denmark, France, Germany, Ireland, New Zealand, Sweden, Switzerland, the USA, and the UK are highly adaptive countries due to their readiness for adaptation. Developing countries with very low levels of readiness have a lower adaptive capacity and are, therefore, more vulnerable to climate change. Additionally, a non-causality test demonstrates that a one-way causality runs from readiness, ecological footprint, GDP, renewable energy, FDI, and natural resource investment to the adaptive capacity in all panels. The developed countries are less vulnerable to climate change because of their well-established economies, rich capital resources, good governance, and timely and effective readiness strategies. Adaptation readiness is a vital tool in capacity building for societal adaptation to minimize the effects of disasters on the living standard of communities.

Suggested Citation

  • Sahrish Saeed & Muhammad Sohail Amjad Makhdum & Sofia Anwar & Muhammad Rizwan Yaseen, 2023. "Climate Change Vulnerability, Adaptation, and Feedback Hypothesis: A Comparison of Lower-Middle, Upper-Middle, and High-Income Countries," Sustainability, MDPI, vol. 15(5), pages 1-25, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4145-:d:1079975
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4145/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4145/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiaqi Xiao & Artūras Juodis & Yiannis Karavias & Vasilis Sarafidis & Jan Ditzen, 2023. "Improved tests for Granger noncausality in panel data," Stata Journal, StataCorp LP, vol. 23(1), pages 230-242, March.
    2. Sam Fankhauser, 2017. "Adaptation to Climate Change," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 209-230, October.
    3. Heidi K. Edmonds & C. A. Knox Lovell & Julie E. Lovell, 2022. "The Inequities of National Adaptation to Climate Change," Resources, MDPI, vol. 12(1), pages 1-26, December.
    4. Dumitrescu, Elena-Ivona & Hurlin, Christophe, 2012. "Testing for Granger non-causality in heterogeneous panels," Economic Modelling, Elsevier, vol. 29(4), pages 1450-1460.
    5. M. Hashem Pesaran & Aman Ullah & Takashi Yamagata, 2008. "A bias-adjusted LM test of error cross-section independence," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 105-127, March.
    6. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-1395, November.
    7. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    8. Robert Kates, 2000. "Cautionary Tales: Adaptation and the Global Poor," Climatic Change, Springer, vol. 45(1), pages 5-17, April.
    9. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    10. Corey Lesk & Pedram Rowhani & Navin Ramankutty, 2016. "Influence of extreme weather disasters on global crop production," Nature, Nature, vol. 529(7584), pages 84-87, January.
    11. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    12. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    13. Mathiesen, Brian Vad & Lund, Henrik & Karlsson, Kenneth, 2011. "100% Renewable energy systems, climate mitigation and economic growth," Applied Energy, Elsevier, vol. 88(2), pages 488-501, February.
    14. Thornton, Philip K. & Lipper, Leslie, 2014. "How does climate change alter agricultural strategies to support food security?:," IFPRI discussion papers 1340, International Food Policy Research Institute (IFPRI).
    15. Alex Bowen & Sarah Cochrane & Samuel Fankhauser, 2012. "Climate change, adaptation and economic growth," Climatic Change, Springer, vol. 113(2), pages 95-106, July.
    16. repec:fpr:export:1340 is not listed on IDEAS
    17. Khan, Muhammad Tariq Iqbal & Yaseen, Muhammad Rizwan & Ali, Qamar, 2019. "Nexus between financial development, tourism, renewable energy, and greenhouse gas emission in high-income countries: A continent-wise analysis," Energy Economics, Elsevier, vol. 83(C), pages 293-310.
    18. Hein, Walter & Wilson, Clevo & Lee, Boon & Rajapaksa, Darshana & de Moel, Hans & Athukorala, Wasantha & Managi, Shunsuke, 2019. "Climate change and natural disasters: Government mitigation activities and public property demand response," Land Use Policy, Elsevier, vol. 82(C), pages 436-443.
    19. Adom, Philip Kofi & Adams, Samuel, 2020. "Decomposition of technical efficiency in agricultural production in Africa into transient and persistent technical efficiency under heterogeneous technologies," World Development, Elsevier, vol. 129(C).
    20. Sam Fankhauser, 2017. "Adaptation to Climate Change," Annual Review of Resource Economics, Annual Reviews, vol. 9(1), pages 209-230, October.
    21. Baarsch, Florent & Granadillos, Jessie R. & Hare, William & Knaus, Maria & Krapp, Mario & Schaeffer, Michiel & Lotze-Campen, Hermann, 2020. "The impact of climate change on incomes and convergence in Africa," World Development, Elsevier, vol. 126(C).
    22. Omri, Anis & Nguyen, Duc Khuong & Rault, Christophe, 2014. "Causal interactions between CO2 emissions, FDI, and economic growth: Evidence from dynamic simultaneous-equation models," Economic Modelling, Elsevier, vol. 42(C), pages 382-389.
    23. repec:ipg:wpaper:2014-542 is not listed on IDEAS
    24. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    25. Millner, Antony & Dietz, Simon, 2015. "Adaptation to climate change and economic growth in developing countries," Environment and Development Economics, Cambridge University Press, vol. 20(3), pages 380-406, June.
    26. Joakim Westerlund, 2005. "New Simple Tests for Panel Cointegration," Econometric Reviews, Taylor & Francis Journals, vol. 24(3), pages 297-316.
    27. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    28. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    29. Sapkota, Pratikshya & Bastola, Umesh, 2017. "Foreign direct investment, income, and environmental pollution in developing countries: Panel data analysis of Latin America," Energy Economics, Elsevier, vol. 64(C), pages 206-212.
    30. Ali, Qamar & Raza, Ali & Narjis, Saadia & Saeed, Sahrish & Khan, Muhammad Tariq Iqbal, 2020. "Potential of renewable energy, agriculture, and financial sector for the economic growth: Evidence from politically free, partly free and not free countries," Renewable Energy, Elsevier, vol. 162(C), pages 934-947.
    31. Jeetendra Prakash Aryal & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri & Dil Bahadur Rahut & M. L. Jat, 2020. "Climate change and agriculture in South Asia: adaptation options in smallholder production systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5045-5075, August.
    32. Chen, Chen & Doherty, Meghan & Coffee, Joyce & Wong, Theodore & Hellmann, Jessica, 2016. "Measuring the adaptation gap: A framework for evaluating climate hazards and opportunities in urban areas," Environmental Science & Policy, Elsevier, vol. 66(C), pages 403-419.
    33. Jayatilleke S. Bandara & Yiyong Cai, 2014. "The impact of climate change on food crop productivity, food prices and food security in South Asia," Economic Analysis and Policy, Elsevier, vol. 44(4), pages 451-465.
    34. Artūras Juodis & Yiannis Karavias & Vasilis Sarafidis, 2021. "A homogeneous approach to testing for Granger non-causality in heterogeneous panels," Empirical Economics, Springer, vol. 60(1), pages 93-112, January.
    35. Swamy, P A V B, 1970. "Efficient Inference in a Random Coefficient Regression Model," Econometrica, Econometric Society, vol. 38(2), pages 311-323, March.
    36. Destek, Mehmet Akif & Aslan, Alper, 2017. "Renewable and non-renewable energy consumption and economic growth in emerging economies: Evidence from bootstrap panel causality," Renewable Energy, Elsevier, vol. 111(C), pages 757-763.
    37. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 239-253.
    38. Ali, Qamar & Yaseen, Muhammad Rizwan & Anwar, Sofia & Makhdum, Muhammad Sohail Amjad & Khan, Muhammad Tariq Iqbal, 2021. "The impact of tourism, renewable energy, and economic growth on ecological footprint and natural resources: A panel data analysis," Resources Policy, Elsevier, vol. 74(C).
    39. Tehmina Zahid & Noman Arshed & Mubbasher Munir & Kamran Hameed, 2021. "Role of energy consumption preferences on human development: a study of SAARC region," Economic Change and Restructuring, Springer, vol. 54(1), pages 121-144, February.
    40. Demena, Binyam Afewerk & Afesorgbor, Sylvanus Kwaku, 2020. "The effect of FDI on environmental emissions: Evidence from a meta-analysis," Energy Policy, Elsevier, vol. 138(C).
    41. Barry Smit & Ian Burton & Richard Klein & J. Wandel, 2000. "An Anatomy of Adaptation to Climate Change and Variability," Climatic Change, Springer, vol. 45(1), pages 223-251, April.
    42. Chen Chen & Jessica Hellmann & Lea Berrang-Ford & Ian Noble & Patrick Regan, 2018. "A global assessment of adaptation investment from the perspectives of equity and efficiency," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(1), pages 101-122, January.
    43. Spyridon Stavropoulos & Ronald Wall & Yuanze Xu, 2018. "Environmental regulations and industrial competitiveness: evidence from China," Applied Economics, Taylor & Francis Journals, vol. 50(12), pages 1378-1394, March.
    44. Lee, Jung Wan, 2013. "The contribution of foreign direct investment to clean energy use, carbon emissions and economic growth," Energy Policy, Elsevier, vol. 55(C), pages 483-489.
    45. Camila Flórez Bossio & James Ford & Danielle Labbé, 2019. "Adaptive capacity in urban areas of developing countries," Climatic Change, Springer, vol. 157(2), pages 279-297, November.
    46. Suman, A., 2021. "Role of renewable energy technologies in climate change adaptation and mitigation: A brief review from Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Tariq Iqbal Khan & Sofia Anwar & Muhammad Rizwan Yaseen & Abdul Majeed Nadeem, 2022. "The Impact of Natural Disasters and Climate Change on Agriculture: An Empirical Analysis," Journal of Economic Impact, Science Impact Publishers, vol. 4(1), pages 28-38.
    2. Ali, Qamar & Yaseen, Muhammad Rizwan & Anwar, Sofia & Makhdum, Muhammad Sohail Amjad & Khan, Muhammad Tariq Iqbal, 2021. "The impact of tourism, renewable energy, and economic growth on ecological footprint and natural resources: A panel data analysis," Resources Policy, Elsevier, vol. 74(C).
    3. Shahzadi, Irum & Yaseen, Muhammad Rizwan & Iqbal Khan, Muhammad Tariq & Amjad Makhdum, Muhammad Sohail & Ali, Qamar, 2022. "The nexus between research and development, renewable energy and environmental quality: Evidence from developed and developing countries," Renewable Energy, Elsevier, vol. 190(C), pages 1089-1099.
    4. Amir Iqbal & Xuan Tang & Samma Faiz Rasool, 2023. "Investigating the nexus between CO2 emissions, renewable energy consumption, FDI, exports and economic growth: evidence from BRICS countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2234-2263, March.
    5. Qiao, Hui & Chen, Siyu & Dong, Xiucheng & Dong, Kangyin, 2019. "Has China's coal consumption actually reached its peak? National and regional analysis considering cross-sectional dependence and heterogeneity," Energy Economics, Elsevier, vol. 84(C).
    6. Jiang, Hongdian & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin, 2020. "What drives China's natural gas consumption? Analysis of national and regional estimates," Energy Economics, Elsevier, vol. 87(C).
    7. Michael Appiah & Bright Akwasi Gyamfi & Tomiwa Sunday Adebayo & Festus Victor Bekun, 2023. "Do financial development, foreign direct investment, and economic growth enhance industrial development? Fresh evidence from Sub-Sahara African countries," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 22(2), pages 203-227, May.
    8. Dong, Kangyin & Hochman, Gal & Zhang, Yaqing & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions," Energy Economics, Elsevier, vol. 75(C), pages 180-192.
    9. Ali, Qamar & Raza, Ali & Narjis, Saadia & Saeed, Sahrish & Khan, Muhammad Tariq Iqbal, 2020. "Potential of renewable energy, agriculture, and financial sector for the economic growth: Evidence from politically free, partly free and not free countries," Renewable Energy, Elsevier, vol. 162(C), pages 934-947.
    10. Khan, Muhammad Tariq Iqbal & Anwar, Sofia, 2022. "Natural disasters and foreign exchange reserves: The role of renewable energy and human capital," Renewable Energy, Elsevier, vol. 192(C), pages 838-848.
    11. Liu Sicen & Anwar Khan & Allauddin Kakar, 2022. "The Role of Disaggregated Level Natural Resources Rents in Economic Growth and Environmental Degradation of BRICS Economies," Biophysical Economics and Resource Quality, Springer, vol. 7(3), pages 1-14, September.
    12. Andrew Adewale Alola & Glory Chiyoru Dike & Uju Violet Alola, 2022. "The Role of Legal System and Socioeconomic Aspects in the Environmental Quality Drive of the Global South," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 163(2), pages 953-972, September.
    13. Hussein Moghaddam & Robert M. Kunst, 2023. "The Role of Natural Gas in Mitigating Greenhouse Gas Emissions: The Environmental Kuznets Curve Hypothesis for Major Gas-Producing Countries," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    14. Aladejare, Samson Adeniyi, 2022. "Natural resource rents, globalisation and environmental degradation: New insight from 5 richest African economies," Resources Policy, Elsevier, vol. 78(C).
    15. Usman, Muhammad & Makhdum, Muhammad Sohail Amjad, 2021. "What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development," Renewable Energy, Elsevier, vol. 179(C), pages 12-28.
    16. Schneider, Nicolas & Strielkowski, Wadim, 2023. "Modelling the unit root properties of electricity data—A general note on time-domain applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    17. Angeliki N. Menegaki, 2019. "The ARDL Method in the Energy-Growth Nexus Field; Best Implementation Strategies," Economies, MDPI, vol. 7(4), pages 1-16, October.
    18. Nwani, Chinazaekpere & Usman, Ojonugwa & Okere, Kingsley Ikechukwu & Bekun, Festus Victor, 2023. "Technological pathways to decarbonisation and the role of renewable energy: A study of European countries using consumption-based metrics," Resources Policy, Elsevier, vol. 83(C).
    19. Mehmet Balcilar & Rangan Gupta & Chien-Chiang Lee & Godwin Olasehinde-Williams, 2020. "Insurance-growth nexus in Africa," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 45(2), pages 335-360, April.
    20. Chi, Meiqing & Muhammad, Sulaman & Khan, Zeeshan & Ali, Shahid & Li, Rita Yi Man, 2021. "Is centralization killing innovation? The success story of technological innovation in fiscally decentralized countries," Technological Forecasting and Social Change, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4145-:d:1079975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.