IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p971-d1025663.html
   My bibliography  Save this article

The Coupling and Coordination of Agricultural Carbon Emissions Efficiency and Economic Growth in the Yellow River Basin, China

Author

Listed:
  • Yun Qing

    (Research Center for Economic of Upper Reaches of Yangtze River, Chongqing Technology and Business University, Chongqing 400067, China
    Finance Department, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China)

  • Bingjian Zhao

    (School of Economics, Xihua University, Chengdu 610039, China)

  • Chuanhao Wen

    (College of Economics, Yunnan University, Kunming 550002, China)

Abstract

The balanced ecological protection and high-quality development of the Yellow River basin (YRB) has become a major national strategy in China in which low-carbon agricultural development in the region is crucial. In this context, studying the coupling and coordination between agricultural carbon emissions efficiency and economic growth in the YRB is of great significance to promote low-carbon, green, and sustainable agricultural development. Therefore, based on the data of 30 cities in the YRB from 2010 to 2020, the super-efficient slacks-based measure (SBM) model with non-expected output was employed to effectively measure the agricultural carbon emissions efficiency in the YRB. Subsequently, the coupling and coordination degree of agricultural carbon emissions efficiency and economic growth in the YRB was further calculated. Finally, the Dagum Gini coefficient and kernel density estimation methods were adopted in order to comprehensively examine the spatial differences, as well as the dynamic evolution pattern of the coupled coordination in the YRB. The results demonstrate that there is a significant spatial non-equilibrium in the coupling and coordination degree of agricultural carbon emission efficiency and economic growth in the YRB, in addition to the decreasing trend of coupling coordination during the sample observation period. As such, there is still considerable room for improvement of the efficiency of agricultural carbon emissions and the degree of coupling and coordination in the YRB. This study may serve as a reference for improving the low-carbon development of agriculture and economy in the YRB, providing theoretical guidance for solving the contradiction between ecological protection and economic development in this region.

Suggested Citation

  • Yun Qing & Bingjian Zhao & Chuanhao Wen, 2023. "The Coupling and Coordination of Agricultural Carbon Emissions Efficiency and Economic Growth in the Yellow River Basin, China," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:971-:d:1025663
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/971/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/971/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhongwu Zhang & Huimin Li & Yongjian Cao, 2022. "Research on the Coordinated Development of Economic Development and Ecological Environment of Nine Provinces (Regions) in the Yellow River Basin," Sustainability, MDPI, vol. 14(20), pages 1-14, October.
    2. Holtz-Eakin, Douglas & Selden, Thomas M., 1995. "Stoking the fires? CO2 emissions and economic growth," Journal of Public Economics, Elsevier, vol. 57(1), pages 85-101, May.
    3. Shi An & Shaoliang Zhang & Huping Hou & Yiyan Zhang & Haonan Xu & Jie Liang, 2022. "Coupling Coordination Analysis of the Ecology and Economy in the Yellow River Basin under the Background of High-Quality Development," Land, MDPI, vol. 11(8), pages 1-19, August.
    4. Xiaolan Chen & Qinggang Meng & Jianing Shi & Yufei Liu & Jing Sun & Wanfang Shen, 2022. "Regional Differences and Convergence of Carbon Emissions Intensity in Cities along the Yellow River Basin in China," Land, MDPI, vol. 11(7), pages 1-19, July.
    5. Shuxiao Li & Zhanhong Cheng & Yun Tong & Biao He, 2022. "The Interaction Mechanism of Tourism Carbon Emission Efficiency and Tourism Economy High-Quality Development in the Yellow River Basin," Energies, MDPI, vol. 15(19), pages 1-23, September.
    6. Feng Lan & Zhao Hui & Jing Bian & Ying Wang & Wenxin Shen, 2022. "Ecological Well-Being Performance Evaluation and Spatio-Temporal Evolution Characteristics of Urban Agglomerations in the Yellow River Basin," Land, MDPI, vol. 11(11), pages 1-21, November.
    7. Yujiao Zhou & Weifeng Li & Huihui Li & Zhen Wang & Bei Zhang & Kaiyang Zhong, 2022. "Impact of Water and Land Resources Matching on Agricultural Sustainable Economic Growth: Empirical Analysis with Spatial Spillover Effects from Yellow River Basin, China," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    8. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    9. Moomaw, William R. & Unruh, Gregory C., 1997. "Are environmental Kuznets curves misleading us? The case of CO2 emissions," Environment and Development Economics, Cambridge University Press, vol. 2(4), pages 451-463, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenyang Liu & Xinyao Wang & Ziming Bai & Hongye Wang & Cuixia Li, 2023. "Does Digital Technology Application Promote Carbon Emission Efficiency in Dairy Farms? Evidence from China," Agriculture, MDPI, vol. 13(4), pages 1-23, April.
    2. Gulmira Abbas & Alimujiang Kasimu, 2023. "Characteristics of Land-Use Carbon Emissions and Carbon Balance Zoning in the Economic Belt on the Northern Slope of Tianshan," Sustainability, MDPI, vol. 15(15), pages 1-27, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicole Grunewald & Inmaculada Martínez-Zarzoso, 2009. "Driving Factors of Carbon Dioxide Emissions and the Impact from Kyoto Protocol," Ibero America Institute for Econ. Research (IAI) Discussion Papers 190, Ibero-America Institute for Economic Research.
    2. Jha, Raghbendra & Murthy, K. V. Bhanu, 2003. "An inverse global environmental Kuznets curve," Journal of Comparative Economics, Elsevier, vol. 31(2), pages 352-368, June.
    3. C. Seri & A. de Juan Fernandez, 2021. "The relationship between economic growth and environment. Testing the EKC hypothesis for Latin American countries," Papers 2105.11405, arXiv.org.
    4. Esteve, Vicente & Tamarit, Cecilio, 2012. "Threshold cointegration and nonlinear adjustment between CO2 and income: The Environmental Kuznets Curve in Spain, 1857–2007," Energy Economics, Elsevier, vol. 34(6), pages 2148-2156.
    5. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    6. Soumyananda Dinda, 2009. "EKC: static or dynamic?," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 9(1/2), pages 84-88.
    7. He, Jie & Richard, Patrick, 2010. "Environmental Kuznets curve for CO2 in Canada," Ecological Economics, Elsevier, vol. 69(5), pages 1083-1093, March.
    8. Verbeke, Tom & De Clercq, Marc, 2006. "The income-environment relationship: Evidence from a binary response model," Ecological Economics, Elsevier, vol. 59(4), pages 419-428, October.
    9. Pascalau, Razvan & Qirjo, Dhimitri, 2017. "TTIP and the Environmental Kuznets Curve," MPRA Paper 80192, University Library of Munich, Germany.
    10. Muhammad, Anees & Ishfaq, Ahmed, 2011. "Industrial development, agricultural growth, urbanization and environmental Kuznets curve in Pakistan," MPRA Paper 33469, University Library of Munich, Germany.
    11. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    12. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2017. "Carbon Dioxide Emissions and Economic Growth: An Assessment Based on Production and Consumption Emission Inventories," Ecological Economics, Elsevier, vol. 135(C), pages 269-279.
    13. Amjad Ali & Marc Audi & Ismail Senturk & Yannick Roussel, 2022. "Do Sectoral Growth Promote CO2 Emissions in Pakistan? Time Series Analysis in Presence of Structural Break," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 410-425, March.
    14. Yin, Jianhua & Zheng, Mingzheng & Chen, Jian, 2015. "The effects of environmental regulation and technical progress on CO2 Kuznets curve: An evidence from China," Energy Policy, Elsevier, vol. 77(C), pages 97-108.
    15. Atwi, Majed & Barberán, Ramón & Mur, Jesús & Angulo, Ana, 2018. "CO2 Kuznets Curve Revisited: From Cross-Sections to Panel Data Models," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 40, pages 169-196.
    16. Bölük, Gülden & Mert, Mehmet, 2014. "Fossil & renewable energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from a panel of EU (European Union) countries," Energy, Elsevier, vol. 74(C), pages 439-446.
    17. Yiwei Wang & Shuwang Yang & Canmian Liu & Shiying Li, 2018. "How Would Economic Development Influence Carbon Productivity? A Case from Hubei in China," IJERPH, MDPI, vol. 15(8), pages 1-13, August.
    18. Ezzati, Majid & Singer, Burton H. & Kammen, Daniel M., 2001. "Towards an Integrated Framework for Development and Environment Policy: The Dynamics of Environmental Kuznets Curves," World Development, Elsevier, vol. 29(8), pages 1421-1434, August.
    19. Dong Hee Suh, 2018. "An Entropy Approach to Regional Differences in Carbon Dioxide Emissions: Implications for Ethanol Usage," Sustainability, MDPI, vol. 10(1), pages 1-11, January.
    20. Min Jiang & Euijune Kim & Youngjin Woo, 2020. "The Relationship between Economic Growth and Air Pollution—A Regional Comparison between China and South Korea," IJERPH, MDPI, vol. 17(8), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:971-:d:1025663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.