IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i21p15265-d1267068.html
   My bibliography  Save this article

Traffic Calming Measures and Their Slowing Effect on the Pedestrian Refuge Approach Sections

Author

Listed:
  • Stanisław Majer

    (Department of Construction and Road Engineering, West Pomeranian University of Technology in Szczecin, 71-311 Szczecin, Poland)

  • Alicja Sołowczuk

    (Department of Construction and Road Engineering, West Pomeranian University of Technology in Szczecin, 71-311 Szczecin, Poland)

Abstract

The ever-increasing use of motor vehicles causes a number of traffic safety and community issues, which are particularly severe in cities, accompanied by a scarcity of parking spaces and challenges encountered in road layout alteration projects. The commonly applied solutions include the designation of through streets, the implementation of on-street parking on residential streets, and retrofitted traffic calming measures (TCMs). This article presents the results of the study conducted on a two-way street where the Metered Parking System (MPS) was implemented together with diagonal and parallel parking spaces, refuge islands, horizontal deflection, and lane narrowing by a single-sided chicane. The aim of this study was to identify those TCMs that effectively helped to reduce the island approach speed. The heuristic method was applied to assess the effect of the respective TCMs on reducing the island approach speed, and the key speed reduction determinants were defined using a cause-and-effect diagram and a Pareto chart. The determinants were evaluated with the binary system and tautological inference principles, whereby a determinant was rated as true when it was found in the field, with a simultaneous speed reduction determined in the survey. Determinants that were not confirmed in the field were rated untrue. Comparative analyses were carried out to rate the respective TCMs as effective, moderately effective, or ineffective. In this way, the following three determinants were rated as the most important for speed reduction at refuge islands: free view, visibility of a pedestrian on the right-hand side of the island, and the refuge island surroundings. Although the study was limited to a single street in Poland, the findings may hold true in other countries where similar TCMs are used.

Suggested Citation

  • Stanisław Majer & Alicja Sołowczuk, 2023. "Traffic Calming Measures and Their Slowing Effect on the Pedestrian Refuge Approach Sections," Sustainability, MDPI, vol. 15(21), pages 1-27, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15265-:d:1267068
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/21/15265/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/21/15265/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mingardo, Giuliano & van Wee, Bert & Rye, Tom, 2015. "Urban parking policy in Europe: A conceptualization of past and possible future trends," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 268-281.
    2. Ichoua, Soumia & Gendreau, Michel & Potvin, Jean-Yves, 2003. "Vehicle dispatching with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 144(2), pages 379-396, January.
    3. Maciej Kruszyna & Marta Matczuk-Pisarek, 2021. "The Effectiveness of Selected Devices to Reduce the Speed of Vehicles on Pedestrian Crossings," Sustainability, MDPI, vol. 13(17), pages 1-21, August.
    4. Chryssi Malandraki & Mark S. Daskin, 1992. "Time Dependent Vehicle Routing Problems: Formulations, Properties and Heuristic Algorithms," Transportation Science, INFORMS, vol. 26(3), pages 185-200, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    2. Loske, Dominic & Klumpp, Matthias, 2021. "Human-AI collaboration in route planning: An empirical efficiency-based analysis in retail logistics," International Journal of Production Economics, Elsevier, vol. 241(C).
    3. Rifki, Omar & Chiabaut, Nicolas & Solnon, Christine, 2020. "On the impact of spatio-temporal granularity of traffic conditions on the quality of pickup and delivery optimal tours," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    4. Van Woensel, T. & Kerbache, L. & Peremans, H. & Vandaele, N., 2008. "Vehicle routing with dynamic travel times: A queueing approach," European Journal of Operational Research, Elsevier, vol. 186(3), pages 990-1007, May.
    5. Lu, Jiawei & Nie, Qinghui & Mahmoudi, Monirehalsadat & Ou, Jishun & Li, Chongnan & Zhou, Xuesong Simon, 2022. "Rich arc routing problem in city logistics: Models and solution algorithms using a fluid queue-based time-dependent travel time representation," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 143-182.
    6. Lecluyse, Christophe & Sörensen, Kenneth & Peremans, Herbert, 2013. "A network-consistent time-dependent travel time layer for routing optimization problems," European Journal of Operational Research, Elsevier, vol. 226(3), pages 395-413.
    7. Anke Stieber & Armin Fügenschuh, 2022. "Dealing with time in the multiple traveling salespersons problem with moving targets," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(3), pages 991-1017, September.
    8. Jean-François Cordeau & Gianpaolo Ghiani & Emanuela Guerriero, 2014. "Analysis and Branch-and-Cut Algorithm for the Time-Dependent Travelling Salesman Problem," Transportation Science, INFORMS, vol. 48(1), pages 46-58, February.
    9. Fontaine, Romain & Dibangoye, Jilles & Solnon, Christine, 2023. "Exact and anytime approach for solving the time dependent traveling salesman problem with time windows," European Journal of Operational Research, Elsevier, vol. 311(3), pages 833-844.
    10. Sun, Peng & Veelenturf, Lucas P. & Hewitt, Mike & Van Woensel, Tom, 2018. "The time-dependent pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 1-24.
    11. Verbeeck, C. & Vansteenwegen, P. & Aghezzaf, E.-H., 2016. "Solving the stochastic time-dependent orienteering problem with time windows," European Journal of Operational Research, Elsevier, vol. 255(3), pages 699-718.
    12. Andres Figliozzi, Miguel, 2012. "The time dependent vehicle routing problem with time windows: Benchmark problems, an efficient solution algorithm, and solution characteristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 616-636.
    13. LIAN, Ying & LUCAS, Flavien & SÖRENSEN, Kenneth, 2022. "The on-demand bus routing problem with real-time traffic information," Working Papers 2022003, University of Antwerp, Faculty of Business and Economics.
    14. Liu, Yiming & Roberto, Baldacci & Zhou, Jianwen & Yu, Yang & Zhang, Yu & Sun, Wei, 2023. "Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 310(1), pages 133-155.
    15. Albiach, José & Sanchis, José Marí­a & Soler, David, 2008. "An asymmetric TSP with time windows and with time-dependent travel times and costs: An exact solution through a graph transformation," European Journal of Operational Research, Elsevier, vol. 189(3), pages 789-802, September.
    16. Xiao, Yiyong & Konak, Abdullah, 2016. "The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 146-166.
    17. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    18. Sun, Peng & Veelenturf, Lucas P. & Dabia, Said & Van Woensel, Tom, 2018. "The time-dependent capacitated profitable tour problem with time windows and precedence constraints," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1058-1073.
    19. Wang, Jiawei & Guo, Qinglai & Sun, Hongbin & Chen, Min, 2023. "Collaborative optimization of logistics and electricity for the mobile charging service system," Applied Energy, Elsevier, vol. 336(C).
    20. LECLUYSE, C. & VAN WOENSEL, Tom & PEREMANS, Herbert, 2007. "Vehicle routing with stochastic time-dependent travel times," Working Papers 2007018, University of Antwerp, Faculty of Business and Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15265-:d:1267068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.