IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5580-d809439.html
   My bibliography  Save this article

Quantifying the Effects of Stand and Climate Variables on Biomass of Larch Plantations Using Random Forests and National Forest Inventory Data in North and Northeast China

Author

Listed:
  • Xiao He

    (Key Laboratory of Forest Management and Growth Modelling, National Forestry and Grassland Administration, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China)

  • Xiangdong Lei

    (Key Laboratory of Forest Management and Growth Modelling, National Forestry and Grassland Administration, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China)

  • Weisheng Zeng

    (Academy of Inventory and Planning, National Forestry and Grassland Administration, Beijing 100714, China)

  • Linyan Feng

    (Key Laboratory of Forest Management and Growth Modelling, National Forestry and Grassland Administration, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China)

  • Chaofan Zhou

    (Key Laboratory of Forest Management and Growth Modelling, National Forestry and Grassland Administration, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China)

  • Biyun Wu

    (Key Laboratory of Forest Management and Growth Modelling, National Forestry and Grassland Administration, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China)

Abstract

The accurate estimation of forest biomass is crucial for supporting climate change mitigation efforts such as sustainable forest management. Although traditional regression models have been widely used to link stand biomass with biotic and abiotic predictors, this approach has several disadvantages, including the difficulty in dealing with data autocorrelation, model selection, and convergence. While machine learning can overcome these challenges, the application remains limited, particularly at a large scale with consideration of climate variables. This study used the random forests (RF) algorithm to estimate stand aboveground biomass (AGB) and total biomass (TB) of larch ( Larix spp.) plantations in north and northeast China and quantified the contributions of different predictors. The data for modelling biomass were collected from 445 sample plots of the National Forest Inventory (NFI). A total of 22 independent variables (6 stand and 16 climate variables) were used to develop and train climate-sensitive stand biomass models. Optimization of hyper parameters was implemented using grid search and 10-fold cross-validation. The coefficient of determination ( R 2 ) and root mean square error ( RMSE ) of the RF models were 0.9845 and 3.8008 t ha −1 for AGB, and 0.9836 and 5.1963 t ha −1 for TB. The cumulative contributions of stand and climate factors to stand biomass were >98% and <2%, respectively. The most crucial stand and climate variables were stand volume and annual heat-moisture index (AHM), with relative importance values of >60% and ~0.25%, respectively. The partial dependence plots illustrated the complicated relationships between climate factors and stand biomass. This study illustrated the power of RF for estimating stand biomass and understanding the effects of stand and climate factors on forest biomass. The application of RF can be useful for mapping of large-scale carbon stock.

Suggested Citation

  • Xiao He & Xiangdong Lei & Weisheng Zeng & Linyan Feng & Chaofan Zhou & Biyun Wu, 2022. "Quantifying the Effects of Stand and Climate Variables on Biomass of Larch Plantations Using Random Forests and National Forest Inventory Data in North and Northeast China," Sustainability, MDPI, vol. 14(9), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5580-:d:809439
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5580/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5580/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nabiul Islam Khan & Mithun Chandra Shil & Md Salim Azad & Md Nazmus Sadath & S.M. Feroz & Abdus Subhan Mollick, 2018. "Allometric relationships of stem volume and stand level carbon stocks at varying stand density in Swietenia macrophylla King plantations, Bangladesh," ULB Institutional Repository 2013/285094, ULB -- Universite Libre de Bruxelles.
    2. Ph. Ciais & M. Reichstein & N. Viovy & A. Granier & J. Ogée & V. Allard & M. Aubinet & N. Buchmann & Chr. Bernhofer & A. Carrara & F. Chevallier & N. De Noblet & A. D. Friend & P. Friedlingstein & T. , 2005. "Europe-wide reduction in primary productivity caused by the heat and drought in 2003," Nature, Nature, vol. 437(7058), pages 529-533, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinghui Wang & Yuman Sun & Weiwei Jia & Hezhi Wang & Wancai Zhu, 2023. "Coupling of Forest Carbon Densities with Landscape Patterns and Climate Change in the Lesser Khingan Mountains, Northeast China," Sustainability, MDPI, vol. 15(20), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linghui Guo & Yuanyuan Luo & Yao Li & Tianping Wang & Jiangbo Gao & Hebing Zhang & Youfeng Zou & Shaohong Wu, 2023. "Spatiotemporal Changes and the Prediction of Drought Characteristics in a Major Grain-Producing Area of China," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    2. Finger, Robert, 2010. "Evidence of slowing yield growth - The example of Swiss cereal yields," Food Policy, Elsevier, vol. 35(2), pages 175-182, April.
    3. Bohn, Friedrich J. & Frank, Karin & Huth, Andreas, 2014. "Of climate and its resulting tree growth: Simulating the productivity of temperate forests," Ecological Modelling, Elsevier, vol. 278(C), pages 9-17.
    4. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & Lin, Qingxia & Ning, Shaowei & Zhou, Yuliang & Jin, Juliang & Zhou, Rongxing & Ma, Qiang, 2023. "Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts," Agricultural Water Management, Elsevier, vol. 282(C).
    5. Iris Vogeler & Christof Kluß & Tammo Peters & Friedhelm Taube, 2023. "How Much Complexity Is Required for Modelling Grassland Production at Regional Scales?," Land, MDPI, vol. 12(2), pages 1-18, January.
    6. Yuqing Zhang & Guangxiong Mao & Changchun Chen & Liucheng Shen & Binyu Xiao, 2021. "Population Exposure to Compound Droughts and Heatwaves in the Observations and ERA5 Reanalysis Data in the Gan River Basin, China," Land, MDPI, vol. 10(10), pages 1-28, September.
    7. Reidsma, Pytrik & Ewert, Frank & Boogaard, Hendrik & Diepen, Kees van, 2009. "Regional crop modelling in Europe: The impact of climatic conditions and farm characteristics on maize yields," Agricultural Systems, Elsevier, vol. 100(1-3), pages 51-60, April.
    8. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    9. Pengyuan Wang & Shaoqiang Wang & Bin Chen & Muhammad Amir & Lei Wang & Jinghua Chen & Li Ma & Xiaobo Wang & Yuanyuan Liu & Kai Zhu, 2022. "Light and Water Conditions Co-Regulated Stomata and Leaf Relative Uptake Rate (LRU) during Photosynthesis and COS Assimilation: A Meta-Analysis," Sustainability, MDPI, vol. 14(5), pages 1-26, February.
    10. Qifei Zhang & Yaning Chen & Zhi Li & Congjian Sun & Yanyun Xiang & Zhihui Liu, 2023. "Spatio-Temporal Development of Vegetation Carbon Sinks and Sources in the Arid Region of Northwest China," IJERPH, MDPI, vol. 20(4), pages 1-23, February.
    11. Zhang, Qi & Yu, Xin & Qiu, Rangjian & Liu, Zhongxian & Yang, Zaiqiang, 2022. "Evolution, severity, and spatial extent of compound drought and heat events in north China based on copula model," Agricultural Water Management, Elsevier, vol. 273(C).
    12. Verbeeck, Hans & Samson, Roeland & Granier, André & Montpied, Pierre & Lemeur, Raoul, 2008. "Multi-year model analysis of GPP in a temperate beech forest in France," Ecological Modelling, Elsevier, vol. 210(1), pages 85-103.
    13. Murad Ahmed Farukh & Kamona Rani & Sayed Mohammed Nashif & Rimi Khatun & Lotifa Tamanna Toma & Kimihiko Hyakumura & Kazi Kamrul Islam, 2023. "Carbon Stock Mapping Utilizing Accumulated Volume of Sequestrated Carbon at Bangladesh Agricultural University, Bangladesh," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    14. Minxia Zhang & Shulin Chen & Hong Jiang & Yong Lin & Jinmeng Zhang & Xinzhang Song & Guomo Zhou, 2019. "Water-Use Characteristics and Physiological Response of Moso Bamboo to Flash Droughts," IJERPH, MDPI, vol. 16(12), pages 1-18, June.
    15. Jie Lu & Fengqin Yan, 2023. "The Divergent Resistance and Resilience of Forest and Grassland Ecosystems to Extreme Summer Drought in Carbon Sequestration," Land, MDPI, vol. 12(9), pages 1-17, August.
    16. López-Vicente, M. & Navas, A., 2012. "A new distributed rainfall-runoff (DR2) model based on soil saturation and runoff cumulative processes," Agricultural Water Management, Elsevier, vol. 104(C), pages 128-141.
    17. Yue Qi & Qiang Zhang & Shujuan Hu & Runyuan Wang & Heling Wang & Kai Zhang & Hong Zhao & Sanxue Ren & Yang Yang & Funian Zhao & Fei Chen & Yang Yang, 2022. "Effects of High Temperature and Drought Stresses on Growth and Yield of Summer Maize during Grain Filling in North China," Agriculture, MDPI, vol. 12(11), pages 1-14, November.
    18. Panxing He & Yiyan Zeng & Ningfei Wang & Zhiming Han & Xiaoyu Meng & Tong Dong & Xiaoliang Ma & Shangqian Ma & Jun Ma & Zongjiu Sun, 2023. "Early Evidence That Soil Dryness Causes Widespread Decline in Grassland Productivity in China," Land, MDPI, vol. 12(2), pages 1-17, February.
    19. Martina Bozzola & Robert Finger, 2021. "Stability of risk attitude, agricultural policies and production shocks: evidence from Italy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 48(3), pages 477-501.
    20. Ioannis Roussis & Dimitrios Beslemes & Chariklia Kosma & Vassilios Triantafyllidis & Anastasios Zotos & Evangelia Tigka & Antonios Mavroeidis & Stella Karydogianni & Varvara Kouneli & Ilias Travlos & , 2022. "The Influence of Arbuscular Mycorrhizal Fungus Rhizophagus irregularis on the Growth and Quality of Processing Tomato ( Lycopersicon esculentum Mill.) Seedlings," Sustainability, MDPI, vol. 14(15), pages 1-12, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5580-:d:809439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.