IDEAS home Printed from https://ideas.repec.org/a/wly/wirecc/v11y2020i2ne632.html
   My bibliography  Save this article

Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change

Author

Listed:
  • Sergio M. Vicente‐Serrano
  • Tim R. McVicar
  • Diego G. Miralles
  • Yuting Yang
  • Miquel Tomas‐Burguera

Abstract

This review examines the role of the atmospheric evaporative demand (AED) in drought. AED is a complex concept and here we discuss possible AED definitions, the subsequent metrics to measure and estimate AED, and the different physical drivers that control it. The complex influence of AED on meteorological, environmental/agricultural and hydrological droughts is discussed, stressing the important spatial differences related to the climatological conditions. Likewise, AED influence on drought has implications regarding how different drought metrics consider AED in their attempts to quantify drought severity. Throughout the article, we assess literature findings with respect to: (a) recent drought trends and future projections; (b) the several uncertainties related to data availability; (c) the sensitivity of current drought metrics to AED; and (d) possible roles that both the radiative and physiological effects of increasing atmospheric CO2 concentrations may play as we progress into the future. All these issues preclude identifying a simple effect of the AED on drought severity. Rather it calls for different evaluations of drought impacts and trends under future climate scenarios, considering the complex feedbacks governing the climate system. This article is categorized under: Paleoclimates and Current Trends > Earth System Behavior

Suggested Citation

  • Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
  • Handle: RePEc:wly:wirecc:v:11:y:2020:i:2:n:e632
    DOI: 10.1002/wcc.632
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wcc.632
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wcc.632?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tianbao Zhao & Aiguo Dai, 2017. "Uncertainties in historical changes and future projections of drought. Part II: model-simulated historical and future drought changes," Climatic Change, Springer, vol. 144(3), pages 535-548, October.
    2. Daniel E. Horton & Nathaniel C. Johnson & Deepti Singh & Daniel L. Swain & Bala Rajaratnam & Noah S. Diffenbaugh, 2015. "Contribution of changes in atmospheric circulation patterns to extreme temperature trends," Nature, Nature, vol. 522(7557), pages 465-469, June.
    3. Ph. Ciais & M. Reichstein & N. Viovy & A. Granier & J. Ogée & V. Allard & M. Aubinet & N. Buchmann & Chr. Bernhofer & A. Carrara & F. Chevallier & N. De Noblet & A. D. Friend & P. Friedlingstein & T. , 2005. "Europe-wide reduction in primary productivity caused by the heat and drought in 2003," Nature, Nature, vol. 437(7058), pages 529-533, September.
    4. Justin Sheffield & Eric F. Wood & Michael L. Roderick, 2012. "Little change in global drought over the past 60 years," Nature, Nature, vol. 491(7424), pages 435-438, November.
    5. Aiguo Dai & Tianbao Zhao, 2017. "Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes," Climatic Change, Springer, vol. 144(3), pages 519-533, October.
    6. Jacob Scheff, 2019. "A unified wetting and drying theory," Nature Climate Change, Nature, vol. 9(1), pages 9-10, January.
    7. David Martínez-Granados & José Maestre-Valero & Javier Calatrava & Victoriano Martínez-Alvarez, 2011. "The Economic Impact of Water Evaporation Losses from Water Reservoirs in the Segura Basin, SE Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3153-3175, October.
    8. A. Park Williams & Craig D. Allen & Alison K. Macalady & Daniel Griffin & Connie A. Woodhouse & David M. Meko & Thomas W. Swetnam & Sara A. Rauscher & Richard Seager & Henri D. Grissino-Mayer & Jeffre, 2013. "Temperature as a potent driver of regional forest drought stress and tree mortality," Nature Climate Change, Nature, vol. 3(3), pages 292-297, March.
    9. Adriaan J. Teuling, 2018. "A hot future for European droughts," Nature Climate Change, Nature, vol. 8(5), pages 364-365, May.
    10. Anna M. Ukkola & I. Colin Prentice & Trevor F. Keenan & Albert I. J. M. van Dijk & Neil R. Viney & Ranga B. Myneni & Jian Bi, 2016. "Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation," Nature Climate Change, Nature, vol. 6(1), pages 75-78, January.
    11. P. C. D. Milly & K. A. Dunne, 2016. "Potential evapotranspiration and continental drying," Nature Climate Change, Nature, vol. 6(10), pages 946-949, October.
    12. Aiguo Dai, 2013. "Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(1), pages 52-58, January.
    13. Aiguo Dai, 2013. "Erratum: Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(2), pages 171-171, February.
    14. William R. L. Anderegg & Jeffrey M. Kane & Leander D. L. Anderegg, 2013. "Consequences of widespread tree mortality triggered by drought and temperature stress," Nature Climate Change, Nature, vol. 3(1), pages 30-36, January.
    15. Nader Katerji & Gianfranco Rana, 2011. "Crop Reference Evapotranspiration: A Discussion of the Concept, Analysis of the Process and Validation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1581-1600, April.
    16. Sonia I. Seneviratne & Philippe Ciais, 2017. "Trends in ecosystem recovery from drought," Nature, Nature, vol. 548(7666), pages 164-165, August.
    17. Tomas-Burguera, Miquel & Vicente-Serrano, Sergio M. & Grimalt, Miquel & Beguería, Santiago, 2017. "Accuracy of reference evapotranspiration (ETo) estimates under data scarcity scenarios in the Iberian Peninsula," Agricultural Water Management, Elsevier, vol. 182(C), pages 103-116.
    18. Zhang, Yongqiang & Kendy, Eloise & Qiang, Yu & Changming, Liu & Yanjun, Shen & Hongyong, Sun, 2004. "Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain," Agricultural Water Management, Elsevier, vol. 64(2), pages 107-122, January.
    19. L. Lin & A. Gettelman & Q. Fu & Y. Xu, 2018. "Simulated differences in 21st century aridity due to different scenarios of greenhouse gases and aerosols," Climatic Change, Springer, vol. 146(3), pages 407-422, February.
    20. S. Asseng & F. Ewert & P. Martre & R. P. Rötter & D. B. Lobell & D. Cammarano & B. A. Kimball & M. J. Ottman & G. W. Wall & J. W. White & M. P. Reynolds & P. D. Alderman & P. V. V. Prasad & P. K. Agga, 2015. "Rising temperatures reduce global wheat production," Nature Climate Change, Nature, vol. 5(2), pages 143-147, February.
    21. N. G. McDowell & A. P. Williams & C. Xu & W. T. Pockman & L. T. Dickman & S. Sevanto & R. Pangle & J. Limousin & J. Plaut & D. S. Mackay & J. Ogee & J. C. Domec & C. D. Allen & R. A. Fisher & X. Jiang, 2016. "Multi-scale predictions of massive conifer mortality due to chronic temperature rise," Nature Climate Change, Nature, vol. 6(3), pages 295-300, March.
    22. N. Gedney & P. M. Cox & R. A. Betts & O. Boucher & C. Huntingford & P. A. Stott, 2006. "Detection of a direct carbon dioxide effect in continental river runoff records," Nature, Nature, vol. 439(7078), pages 835-838, February.
    23. W. Brutsaert & M. B. Parlange, 1998. "Hydrologic cycle explains the evaporation paradox," Nature, Nature, vol. 396(6706), pages 30-30, November.
    24. N. G. McDowell & A. P. Williams & C. Xu & W. T. Pockman & L. T. Dickman & S. Sevanto & R. Pangle & J. Limousin & J. Plaut & D. S. Mackay & J. Ogee & J. C. Domec & C. D. Allen & R. A. Fisher & X. Jiang, 2016. "Addendum: Multi-scale predictions of massive conifer mortality due to chronic temperature rise," Nature Climate Change, Nature, vol. 6(11), pages 1048-1048, November.
    25. Yuting Yang & Michael L. Roderick & Shulei Zhang & Tim R. McVicar & Randall J. Donohue, 2019. "Hydrologic implications of vegetation response to elevated CO2 in climate projections," Nature Climate Change, Nature, vol. 9(1), pages 44-48, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julia S. Stoyanova & Christo G. Georgiev & Plamen N. Neytchev, 2023. "Drought Monitoring in Terms of Evapotranspiration Based on Satellite Data from Meteosat in Areas of Strong Land–Atmosphere Coupling," Land, MDPI, vol. 12(1), pages 1-21, January.
    2. Pilar Benito-Verdugo & José Martínez-Fernández & Ángel González-Zamora & Laura Almendra-Martín & Jaime Gaona & Carlos Miguel Herrero-Jiménez, 2023. "Impact of Agricultural Drought on Barley and Wheat Yield: A Comparative Case Study of Spain and Germany," Agriculture, MDPI, vol. 13(11), pages 1-20, November.
    3. Leonardo V. Noto & Giuseppe Cipolla & Antonio Francipane & Dario Pumo, 2023. "Climate Change in the Mediterranean Basin (Part I): Induced Alterations on Climate Forcings and Hydrological Processes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2287-2305, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shan Jiang & Jian Zhou & Guojie Wang & Qigen Lin & Ziyan Chen & Yanjun Wang & Buda Su, 2022. "Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China," Land, MDPI, vol. 11(6), pages 1-21, June.
    2. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & Lin, Qingxia & Ning, Shaowei & Zhou, Yuliang & Jin, Juliang & Zhou, Rongxing & Ma, Qiang, 2023. "Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts," Agricultural Water Management, Elsevier, vol. 282(C).
    3. Hao Xu & Xu Lian & Ingrid J. Slette & Hui Yang & Yuan Zhang & Anping Chen & Shilong Piao, 2022. "Rising ecosystem water demand exacerbates the lengthening of tropical dry seasons," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Li, Su-Yuan & Miao, Li-Juan & Jiang, Zhi-Hong & Wang, Guo-Jie & Gnyawali, Kaushal Raj & Zhang, Jing & Zhang, Hui & Fang, Ke & He, Yu & Li, Chun, 2020. "Projected drought conditions in Northwest China with CMIP6 models under combined SSPs and RCPs for 2015–2099," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(3), pages 210-217.
    5. Jinhua Wen & Yian Hua & Chenkai Cai & Shiwu Wang & Helong Wang & Xinyan Zhou & Jian Huang & Jianqun Wang, 2023. "Probabilistic Forecast and Risk Assessment of Flash Droughts Based on Numeric Weather Forecast: A Case Study in Zhejiang, China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    6. Rengui Jiang & Jiancang Xie & Hailong He & Jungang Luo & Jiwei Zhu, 2015. "Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2885-2903, February.
    7. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    8. L. Lin & A. Gettelman & Q. Fu & Y. Xu, 2018. "Simulated differences in 21st century aridity due to different scenarios of greenhouse gases and aerosols," Climatic Change, Springer, vol. 146(3), pages 407-422, February.
    9. William M. Hammond & A. Park Williams & John T. Abatzoglou & Henry D. Adams & Tamir Klein & Rosana López & Cuauhtémoc Sáenz-Romero & Henrik Hartmann & David D. Breshears & Craig D. Allen, 2022. "Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Sergio M. Vicente-Serrano & Miquel Tomas-Burguera & Santiago Beguería & Fergus Reig & Borja Latorre & Marina Peña-Gallardo & M. Yolanda Luna & Ana Morata & José C. González-Hidalgo, 2017. "A High Resolution Dataset of Drought Indices for Spain," Data, MDPI, vol. 2(3), pages 1-10, June.
    12. D. Carvalho & S. C. Pereira & R. Silva & A. Rocha, 2022. "Aridity and desertification in the Mediterranean under EURO-CORDEX future climate change scenarios," Climatic Change, Springer, vol. 174(3), pages 1-24, October.
    13. Zheng Li & Tao Zhou & Xiang Zhao & Kaicheng Huang & Shan Gao & Hao Wu & Hui Luo, 2015. "Assessments of Drought Impacts on Vegetation in China with the Optimal Time Scales of the Climatic Drought Index," IJERPH, MDPI, vol. 12(7), pages 1-20, July.
    14. Gregory McCabe & David Wolock, 2015. "Increasing Northern Hemisphere water deficit," Climatic Change, Springer, vol. 132(2), pages 237-249, September.
    15. Zhang, Qi & Yu, Xin & Qiu, Rangjian & Liu, Zhongxian & Yang, Zaiqiang, 2022. "Evolution, severity, and spatial extent of compound drought and heat events in north China based on copula model," Agricultural Water Management, Elsevier, vol. 273(C).
    16. Lei Zou & Jun Xia & Dunxian She, 2018. "Analysis of Impacts of Climate Change and Human Activities on Hydrological Drought: a Case Study in the Wei River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1421-1438, March.
    17. Ruiwen Zhang & Chengyi Zhao & Xiaofei Ma & Karthikeyan Brindha & Qifei Han & Chaofan Li & Xiaoning Zhao, 2019. "Projected Spatiotemporal Dynamics of Drought under Global Warming in Central Asia," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    18. Julia S. Stoyanova & Christo G. Georgiev & Plamen N. Neytchev, 2023. "Drought Monitoring in Terms of Evapotranspiration Based on Satellite Data from Meteosat in Areas of Strong Land–Atmosphere Coupling," Land, MDPI, vol. 12(1), pages 1-21, January.
    19. Yaoping Wang & Jiafu Mao & Forrest M. Hoffman & Céline J. W. Bonfils & Hervé Douville & Mingzhou Jin & Peter E. Thornton & Daniel M. Ricciuto & Xiaoying Shi & Haishan Chen & Stan D. Wullschleger & Shi, 2022. "Quantification of human contribution to soil moisture-based terrestrial aridity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Brigitte Mueller & Xuebin Zhang, 2016. "Causes of drying trends in northern hemispheric land areas in reconstructed soil moisture data," Climatic Change, Springer, vol. 134(1), pages 255-267, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:wirecc:v:11:y:2020:i:2:n:e632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1757-7799 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.