IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p4804-d542998.html
   My bibliography  Save this article

Recycling Carbon Tax under Different Energy Efficiency Improvements: A CGE Analysis of China

Author

Listed:
  • Weijiang Liu

    (Center for Quantitative Economics, Jilin University, Changchun 130012, China)

  • Tingting Liu

    (Business School, Jilin University, Changchun 130012, China)

  • Yangyang Li

    (Business School, Jilin University, Changchun 130012, China)

  • Min Liu

    (Business School, Jilin University, Changchun 130012, China)

Abstract

Carbon emission reductions and sustainable development have become hot issues in international conferences. As the most direct instrument for carbon emission reductions, the carbon tax has not been favored by policymakers because of its negative effect on the economy. To achieve low-carbon sustainable development, we use a computable general equilibrium (CGE) model to simulate carbon tax recycling under different energy transfer efficiency improvements to achieve triple dividends of carbon emission reductions and social welfare improvement. This paper contributes to the literature on recycling carbon tax for triple dividends in China. The simulation has three main findings: (i) the carbon tax revenue recycling toward reducing the resident income tax rate yields triple dividends without any energy transfer efficiency improvement; (ii) the losses of GDP and social welfare are exaggerated. Meanwhile, the carbon tax brings down carbon emissions and total carbon intensity of GDP with a mild impact on the Chinese economy; (iii) the improvement of energy transfer efficiency demonstrates the advantages of recycling carbon tax and is essential for achieving triple dividends. Thus, we propose the following policy recommendations: (i) the pilot carbon tax mechanism should be launched in high-carbon sectors (such as coal) and then implemented in other industries gradually; (ii) the government should strongly support the technological improvement of energy transfer efficiency in order to achieve sustainable development.

Suggested Citation

  • Weijiang Liu & Tingting Liu & Yangyang Li & Min Liu, 2021. "Recycling Carbon Tax under Different Energy Efficiency Improvements: A CGE Analysis of China," Sustainability, MDPI, vol. 13(9), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4804-:d:542998
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/4804/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/4804/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ojha, Vijay P. & Pohit, Sanjib & Ghosh, Joydeep, 2020. "Recycling carbon tax for inclusive green growth: A CGE analysis of India," Energy Policy, Elsevier, vol. 144(C).
    2. Jia, Zhijie & Lin, Boqiang, 2021. "The impact of removing cross subsidies in electric power industry in China: Welfare, economy, and CO2 emission," Energy Policy, Elsevier, vol. 148(PB).
    3. D. W. Jorgenson, 1971. "Stability of a Dynamic Input-Output System," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 20, pages 264-275, Palgrave Macmillan.
    4. Lin, Boqiang & Jia, Zhijie, 2018. "The energy, environmental and economic impacts of carbon tax rate and taxation industry: A CGE based study in China," Energy, Elsevier, vol. 159(C), pages 558-568.
    5. Bao, Qin & Tang, Ling & Zhang, ZhongXiang & Wang, Shouyang, 2013. "Impacts of border carbon adjustments on China's sectoral emissions: Simulations with a dynamic computable general equilibrium model," China Economic Review, Elsevier, vol. 24(C), pages 77-94.
    6. Mu, Yaqian & Cai, Wenjia & Evans, Samuel & Wang, Can & Roland-Holst, David, 2018. "Employment impacts of renewable energy policies in China: A decomposition analysis based on a CGE modeling framework," Applied Energy, Elsevier, vol. 210(C), pages 256-267.
    7. Barragán-Beaud, Camila & Pizarro-Alonso, Amalia & Xylia, Maria & Syri, Sanna & Silveira, Semida, 2018. "Carbon tax or emissions trading? An analysis of economic and political feasibility of policy mechanisms for greenhouse gas emissions reduction in the Mexican power sector," Energy Policy, Elsevier, vol. 122(C), pages 287-299.
    8. Brenner, Mark & Riddle, Matthew & Boyce, James K., 2007. "A Chinese sky trust?: Distributional impacts of carbon charges and revenue recycling in China," Energy Policy, Elsevier, vol. 35(3), pages 1771-1784, March.
    9. Zhang, Kun & Xue, Mei-Mei & Feng, Kuishuang & Liang, Qiao-Mei, 2019. "The economic effects of carbon tax on China’s provinces," Journal of Policy Modeling, Elsevier, vol. 41(4), pages 784-802.
    10. Shahriyar Nasirov & Raúl O’Ryan & Héctor Osorio, 2020. "Decarbonization Tradeoffs: A Dynamic General Equilibrium Modeling Analysis for the Chilean Power Sector," Sustainability, MDPI, vol. 12(19), pages 1-19, October.
    11. Junqian Xu & Yong Liu & Liling Yang, 2018. "A Comparative Study of the Role of China and India in Sustainable Textile Competition in the U.S. Market under Green Trade Barriers," Sustainability, MDPI, vol. 10(5), pages 1-21, April.
    12. Alvarez, Maximiliano, 2019. "Distributional effects of environmental taxation: An approximation with a meta-regression analysis," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 382-401.
    13. Dissou, Yazid & Eyland, Terry, 2011. "Carbon control policies, competitiveness, and border tax adjustments," Energy Economics, Elsevier, vol. 33(3), pages 556-564, May.
    14. Yuan, Yongna & Duan, Hongbo & Tsvetanov, Tsvetan G., 2020. "Synergizing China's energy and carbon mitigation goals: General equilibrium modeling and policy assessment," Energy Economics, Elsevier, vol. 89(C).
    15. Hae-Jun Kwon & Sang-Wook Woo & Yong-Ju Lee & Je-Young Kim & Sung-Man Lee, 2021. "Achieving High-Performance Spherical Natural Graphite Anode through a Modified Carbon Coating for Lithium-Ion Batteries," Energies, MDPI, vol. 14(7), pages 1-14, April.
    16. Fraser, Iain & Waschik, Robert, 2013. "The Double Dividend hypothesis in a CGE model: Specific factors and the carbon base," Energy Economics, Elsevier, vol. 39(C), pages 283-295.
    17. Elkhan Richard Sadik-Zada & Wilhelm Loewenstein & Yadulla Hasanli, 2021. "Production linkages and dynamic fiscal employment effects of the extractive industries: input-output and nonlinear ARDL analyses of Azerbaijani economy," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(1), pages 3-18, April.
    18. Speck, Stefan, 1999. "Energy and carbon taxes and their distributional implications," Energy Policy, Elsevier, vol. 27(11), pages 659-667, October.
    19. Allan, Grant & Lecca, Patrizio & McGregor, Peter & Swales, Kim, 2014. "The economic and environmental impact of a carbon tax for Scotland: A computable general equilibrium analysis," Ecological Economics, Elsevier, vol. 100(C), pages 40-50.
    20. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680.
    21. Monika Roman & Kamil Roman & Michał Roman, 2021. "Spatial Variation in Particulate Emission Resulting from Animal Farming in Poland," Agriculture, MDPI, vol. 11(2), pages 1-14, February.
    22. Li, Wei & Jia, Zhijie, 2016. "The impact of emission trading scheme and the ratio of free quota: A dynamic recursive CGE model in China," Applied Energy, Elsevier, vol. 174(C), pages 1-14.
    23. Zhang, Zhong Xiang, 1998. "Macroeconomic Effects of CO2 Emission Limits: A Computable General Equilibrium Analysis for China," Journal of Policy Modeling, Elsevier, vol. 20(2), pages 213-250, April.
    24. Barun Deb Pal & Vijay P. Ojha & Sanjib Pohit & Joyashree Roy, 2015. "GHG Emissions and Economic Growth," India Studies in Business and Economics, Springer, edition 127, number 978-81-322-1943-9, September.
    25. Paula Pereda & Andrea Lucchesi, Carolina Policarpo Garcia, Bruno Toni Palialol, 2019. "Neutral carbon tax and environmental targets in Brazil," Working Papers, Department of Economics 2019_02, University of São Paulo (FEA-USP).
    26. Kirchner, Mathias & Sommer, Mark & Kratena, Kurt & Kletzan-Slamanig, Daniela & Kettner-Marx, Claudia, 2019. "CO2 taxes, equity and the double dividend – Macroeconomic model simulations for Austria," Energy Policy, Elsevier, vol. 126(C), pages 295-314.
    27. Gupta, Monika & Bandyopadhyay, Kaushik Ranjan & Singh, Sanjay K., 2019. "Measuring effectiveness of carbon tax on Indian road passenger transport: A system dynamics approach," Energy Economics, Elsevier, vol. 81(C), pages 341-354.
    28. Jia, Zhijie & Lin, Boqiang, 2020. "Rethinking the choice of carbon tax and carbon trading in China," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    29. Cui, Qi & Liu, Yu & Ali, Tariq & Gao, Ji & Chen, Hao, 2020. "Economic and climate impacts of reducing China's renewable electricity curtailment: A comparison between CGE models with alternative nesting structures of electricity," Energy Economics, Elsevier, vol. 91(C).
    30. Maruf Rahman Maxim & Kerstin K. Zander, 2020. "Green Tax Reform in Australia in the Presence of Improved Environment-Induced Productivity Gain: Does It Offer Sustainable Recovery from a Post-COVID-19 Recession?," Sustainability, MDPI, vol. 12(16), pages 1-18, August.
    31. Liu, Yu & Lu, Yingying, 2015. "The Economic impact of different carbon tax revenue recycling schemes in China: A model-based scenario analysis," Applied Energy, Elsevier, vol. 141(C), pages 96-105.
    32. Zhou, P. & Zhang, L. & Zhou, D.Q. & Xia, W.J., 2013. "Modeling economic performance of interprovincial CO2 emission reduction quota trading in China," Applied Energy, Elsevier, vol. 112(C), pages 1518-1528.
    33. Mahmood, Arshad & Marpaung, Charles O.P., 2014. "Carbon pricing and energy efficiency improvement -- why to miss the interaction for developing economies? An illustrative CGE based application to the Pakistan case," Energy Policy, Elsevier, vol. 67(C), pages 87-103.
    34. Goulder, Lawrence H., 2013. "Climate change policy's interactions with the tax system," Energy Economics, Elsevier, vol. 40(S1), pages 3-11.
    35. Paula Carvalho Pereda & Andrea Lucchesi & Carolina Policarpo Garcia & Bruno Toni Palialol, 2019. "Neutral carbon tax and environmental targets in Brazil," Economic Systems Research, Taylor & Francis Journals, vol. 31(1), pages 70-91, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nan Li & Beibei Shi & Rong Kang, 2021. "Information Disclosure, Coal Withdrawal and Carbon Emissions Reductions: A Policy Test Based on China’s Environmental Information Disclosure," Sustainability, MDPI, vol. 13(17), pages 1-24, August.
    2. Ie Zheng Goh & Nitanan Koshy Matthew, 2021. "Residents’ Willingness to Pay for a Carbon Tax," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    3. Liu, Na & Yao, Xilong & Wan, Fang & Han, Yunfei, 2023. "Are tax revenue recycling schemes based on industry-differentiated carbon tax conducive to realizing the “double dividend”?," Energy Economics, Elsevier, vol. 124(C).
    4. Anh Huu Nguyen & Thinh Gia Hoang & Duy Thanh Nguyen & Loan Quynh Thi Nguyen & Duong Thuy Doan, 2023. "The Development of Green Bond in Developing Countries: Insights from Southeast Asia Market Participants," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 35(1), pages 196-218, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weijiang Liu & Min Liu & Tingting Liu & Yangyang Li & Yizhe Hao, 2022. "Does a Recycling Carbon Tax with Technological Progress in Clean Electricity Drive the Green Economy?," IJERPH, MDPI, vol. 19(3), pages 1-18, February.
    2. Lingli Qi & Lei Zhao & Yongqiang Zhang & Shiqi Jiang & Xinyue Lin & Yishuai Ren, 2024. "Computable general equilibrium analysis of neutral carbon trading scheme and revenue recycling impacts on income distribution in China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    3. Huang, Hai & Roland-Holst, David & Springer, Cecilia & Lin, Jiang & Cai, Wenjia & Wang, Can, 2019. "Emissions trading systems and social equity: A CGE assessment for China," Applied Energy, Elsevier, vol. 235(C), pages 1254-1265.
    4. Hu, Haisheng & Dong, Wanhao & Zhou, Qian, 2021. "A comparative study on the environmental and economic effects of a resource tax and carbon tax in China: Analysis based on the computable general equilibrium model," Energy Policy, Elsevier, vol. 156(C).
    5. Zhao, Zhe & Wang, Pei & Chen, Jiancheng & Zhang, Fan, 2021. "Economic spillover effect of grass-based livestock husbandry on agricultural production—A case study in Hulun Buir, China," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    6. Liu, Na & Yao, Xilong & Wan, Fang & Han, Yunfei, 2023. "Are tax revenue recycling schemes based on industry-differentiated carbon tax conducive to realizing the “double dividend”?," Energy Economics, Elsevier, vol. 124(C).
    7. Brown, Marilyn A. & Li, Yufei & Soni, Anmol, 2020. "Are all jobs created equal? Regional employment impacts of a U.S. carbon tax," Applied Energy, Elsevier, vol. 262(C).
    8. Li, Wei & Jia, Zhijie, 2016. "The impact of emission trading scheme and the ratio of free quota: A dynamic recursive CGE model in China," Applied Energy, Elsevier, vol. 174(C), pages 1-14.
    9. Jia, Zhijie & Lin, Boqiang, 2020. "Rethinking the choice of carbon tax and carbon trading in China," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    10. Shenghao Feng & Xiujian Peng & Philip Adams, 2021. "Energy and Economic Implications of Carbon Neutrality in China -- A Dynamic General Equilibrium Analysis," Centre of Policy Studies/IMPACT Centre Working Papers g-318, Victoria University, Centre of Policy Studies/IMPACT Centre.
    11. Wesseh, Presley K. & Lin, Boqiang, 2019. "Environmental policy and ‘double dividend’ in a transitional economy," Energy Policy, Elsevier, vol. 134(C).
    12. Tian, Xu & Dai, Hancheng & Geng, Yong & Huang, Zhen & Masui, Toshihiko & Fujita, Tsuyoshi, 2017. "The effects of carbon reduction on sectoral competitiveness in China: A case of Shanghai," Applied Energy, Elsevier, vol. 197(C), pages 270-278.
    13. Hájek, Miroslav & Zimmermannová, Jarmila & Helman, Karel & Rozenský, Ladislav, 2019. "Analysis of carbon tax efficiency in energy industries of selected EU countries," Energy Policy, Elsevier, vol. 134(C).
    14. Zhang, Xiao-Bing & Xu, Jing, 2018. "Optimal policies for climate change: A joint consideration of CO2 and methane," Applied Energy, Elsevier, vol. 211(C), pages 1021-1029.
    15. Ling Tang & Qin Bao & ZhongXiang Zhang & Shouyang Wang, 2015. "Carbon-based border tax adjustments and China’s international trade: analysis based on a dynamic computable general equilibrium model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(2), pages 329-360, April.
    16. Tan, Qinliang & Ding, Yihong & Ye, Qi & Mei, Shufan & Zhang, Yimei & Wei, Yongmei, 2019. "Optimization and evaluation of a dispatch model for an integrated wind-photovoltaic-thermal power system based on dynamic carbon emissions trading," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Wang, Qian & Hubacek, Klaus & Feng, Kuishuang & Wei, Yi-Ming & Liang, Qiao-Mei, 2016. "Distributional effects of carbon taxation," Applied Energy, Elsevier, vol. 184(C), pages 1123-1131.
    18. Shuyang Chen, 2022. "The inequality impacts of the carbon tax in China," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-10, December.
    19. Mardones, Cristian & Ortega, José, 2021. "Are the emissions trading systems’ simulations generated with a computable general equilibrium model sensitive to the nested production structure?," Applied Energy, Elsevier, vol. 298(C).
    20. An, Kangxin & Zhang, Shihui & Huang, Hai & Liu, Yuan & Cai, Wenjia & Wang, Can, 2021. "Socioeconomic impacts of household participation in emission trading scheme: A Computable General Equilibrium-based case study," Applied Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4804-:d:542998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.