IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p2213-d501727.html
   My bibliography  Save this article

Enhancing LPG Adoption in Ghana (ELAG): A Trial Testing Policy-Relevant Interventions to Increase Sustained Use of Clean Fuels

Author

Listed:
  • Daniel Carrión

    (Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA)

  • Rebecca Prah

    (Kintampo Health Research Centre, Kintampo, Ghana)

  • Theresa Tawiah

    (Kintampo Health Research Centre, Kintampo, Ghana)

  • Oscar Agyei

    (Kintampo Health Research Centre, Kintampo, Ghana)

  • Mieks Twumasi

    (Kintampo Health Research Centre, Kintampo, Ghana)

  • Mohammed Mujtaba

    (Kintampo Health Research Centre, Kintampo, Ghana)

  • Darby Jack

    (Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA)

  • Kwaku Poku Asante

    (Kintampo Health Research Centre, Kintampo, Ghana)

Abstract

Rural Ghanaians rely on solid biomass fuels for their cooking. National efforts to promote the Sustainable Development Goals include the Rural Liquefied Petroleum Gas Promotion Program (RLP), which freely distributes LPG stoves, but evaluations have demonstrated low sustained use among recipients. Our study objective was to assess if cheap and scalable add-on interventions could increase sustained use of LPG stoves under the RLP scheme. We replicated RLP conditions among participants in 27 communities in Kintampo, Ghana, but cluster-randomized them to four add-on interventions: a behavioral intervention, fuel delivery service, combined intervention, or control. We reported on the final 6 months of a 12-month follow-up for participants ( n = 778). Results demonstrated increased use for each intervention, but magnitudes were small. The direct delivery intervention induced the largest increase: 280 min over 6 months ( p < 0.001), ~1.5 min per day. Self-reported refills (a secondary outcome), support increased use for the dual intervention arm (IRR = 2.2, p = 0.026). Past literature demonstrates that recipients of clean cookstoves rarely achieve sustained use of the technologies. While these results are statistically significant, we interpret them as null given the implied persistent reliance on solid fuels. Future research should investigate if fuel subsidies would increase sustained use since current LPG promotion activities do not.

Suggested Citation

  • Daniel Carrión & Rebecca Prah & Theresa Tawiah & Oscar Agyei & Mieks Twumasi & Mohammed Mujtaba & Darby Jack & Kwaku Poku Asante, 2021. "Enhancing LPG Adoption in Ghana (ELAG): A Trial Testing Policy-Relevant Interventions to Increase Sustained Use of Clean Fuels," Sustainability, MDPI, vol. 13(4), pages 1-12, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2213-:d:501727
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/2213/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/2213/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rema Hanna & Esther Duflo & Michael Greenstone, 2016. "Up in Smoke: The Influence of Household Behavior on the Long-Run Impact of Improved Cooking Stoves," American Economic Journal: Economic Policy, American Economic Association, vol. 8(1), pages 80-114, February.
    2. Bensch, Gunther & Peters, Jörg, 2012. "A Recipe for Success? Randomized Free Distribution of Improved Cooking Stoves in Senegal," Ruhr Economic Papers 325, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    3. Alem, Yonas & Beyene, Abebe D. & Köhlin, Gunnar & Mekonnen, Alemu, 2016. "Modeling household cooking fuel choice: A panel multinomial logit approach," Energy Economics, Elsevier, vol. 59(C), pages 129-137.
    4. Shankar, Anita V. & Quinn, Ashlinn K. & Dickinson, Katherine L. & Williams, Kendra N. & Masera, Omar & Charron, Dana & Jack, Darby & Hyman, Jasmine & Pillarisetti, Ajay & Bailis, Rob & Kumar, Praveen , 2020. "Everybody stacks: Lessons from household energy case studies to inform design principles for clean energy transitions," Energy Policy, Elsevier, vol. 141(C).
    5. Ruiz-Mercado, Ilse & Masera, Omar & Zamora, Hilda & Smith, Kirk R., 2011. "Adoption and sustained use of improved cookstoves," Energy Policy, Elsevier, vol. 39(12), pages 7557-7566.
    6. Marc Jeuland & Subhrendu K. Pattanayak & Randall Bluffstone, 2015. "The Economics of Household Air Pollution," Annual Review of Resource Economics, Annual Reviews, vol. 7(1), pages 81-108, October.
    7. Allison Ruark & Rachel Chase & John Hembling & Valerie Rhoe Davis & Paul Clayton Perrin & Dorothy Brewster-Lee, 2017. "Measuring couple relationship quality in a rural African population: Validation of a Couple Functionality Assessment Tool in Malawi," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-19, November.
    8. Gould, Carlos F. & Urpelainen, Johannes, 2018. "LPG as a clean cooking fuel: Adoption, use, and impact in rural India," Energy Policy, Elsevier, vol. 122(C), pages 395-408.
    9. Tumwebaze, Innocent K. & Mosler, Hans-Joachim, 2015. "Effectiveness of group discussions and commitment in improving cleaning behaviour of shared sanitation users in Kampala, Uganda slums," Social Science & Medicine, Elsevier, vol. 147(C), pages 72-79.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chattopadhyay, Mriduchhanda & Arimura, Toshi H. & Katayama, Hajime & Sakudo, Mari & Yokoo, Hide-Fumi, 2021. "Subjective probabilistic expectations, household air pollution, and health: Evidence from cooking fuel use patterns in West Bengal, India," Resource and Energy Economics, Elsevier, vol. 66(C).
    2. Yokoo, Hide-Fumi & Arimura, Toshi H. & Chattopadhyay, Mriduchhanda & Katayama, Hajime, 2023. "Subjective risk belief function in the field: Evidence from cooking fuel choices and health in India," Journal of Development Economics, Elsevier, vol. 161(C).
    3. Talevi, Marta & Pattanayak, Subhrendu K. & Das, Ipsita & Lewis, Jessica J. & Singha, Ashok K., 2022. "Speaking from experience: Preferences for cooking with biogas in rural India," Energy Economics, Elsevier, vol. 107(C).
    4. Gould, Carlos F. & Schlesinger, Samuel B. & Molina, Emilio & Bejarano, M. Lorena & Valarezo, Alfredo & Jack, Darby W., 2020. "Household fuel mixes in peri-urban and rural Ecuador: Explaining the context of LPG, patterns of continued firewood use, and the challenges of induction cooking," Energy Policy, Elsevier, vol. 136(C).
    5. Gebreegziabher, Zenebe & Beyene, Abebe D. & Bluffstone, Randall & Martinsson, Peter & Mekonnen, Alemu & Toman, Michael A., 2018. "Fuel savings, cooking time and user satisfaction with improved biomass cookstoves: Evidence from controlled cooking tests in Ethiopia," Resource and Energy Economics, Elsevier, vol. 52(C), pages 173-185.
    6. Jeuland, Marc & Desai, Manish A. & Bair, Elizabeth F. & Mohideen Abdul Cader, Nafeesa & Natesan, Durairaj & Isaac, Wilson Jayakaran & Sambandam, Sankar & Balakrishnan, Kalpana & Thangavel, Gurusamy & , 2023. "A randomized trial of price subsidies for liquefied petroleum cooking gas among low-income households in rural India," World Development Perspectives, Elsevier, vol. 30(C).
    7. Swain, Swadhina Shikha & Mishra, Pulak, 2021. "How does cleaner energy transition influence standard of living and natural resources conservation? A study of households’ perceptions in rural Odisha, India," Energy, Elsevier, vol. 215(PB).
    8. Jeuland, Marc & Tan Soo, Jie-Sheng & Shindell, Drew, 2018. "The need for policies to reduce the costs of cleaner cooking in low income settings: Implications from systematic analysis of costs and benefits," Energy Policy, Elsevier, vol. 121(C), pages 275-285.
    9. Lindgren, Samantha, 2021. "Cookstove implementation and Education for Sustainable Development: A review of the field and proposed research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    10. Brooks, N. & Bhojvaid, V. & Jeuland, M.A. & Lewis, J.J. & Patange, O. & Pattanayak, S.K., 2016. "How much do alternative cookstoves reduce biomass fuel use? Evidence from North India," Resource and Energy Economics, Elsevier, vol. 43(C), pages 153-171.
    11. Praveen Kumar & Nishant Tiwary, 2020. "Role of Social Enterprises in Addressing Energy Poverty: Making the Case for Refined Understanding through Theory of Co-Production of Knowledge and Theory of Social Capital," Sustainability, MDPI, vol. 12(20), pages 1-13, October.
    12. Gill-Wiehl, A. & Ray, I. & Kammen, D., 2021. "Is clean cooking affordable? A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    13. Calzada, Joan & Sanz, Alex, 2018. "Universal access to clean cookstoves: Evaluation of a public program in Peru," Energy Policy, Elsevier, vol. 118(C), pages 559-572.
    14. Alison Pye & Sara Ronzi & Bertrand Hugo Mbatchou Ngahane & Elisa Puzzolo & Atongno Humphrey Ashu & Daniel Pope, 2020. "Drivers of the Adoption and Exclusive Use of Clean Fuel for Cooking in Sub-Saharan Africa: Learnings and Policy Considerations from Cameroon," IJERPH, MDPI, vol. 17(16), pages 1-24, August.
    15. Ma, Wanglin & Vatsa, Puneet & Zheng, Hongyun, 2022. "Cooking fuel choices and subjective well-being in rural China: Implications for a complete energy transition," Energy Policy, Elsevier, vol. 165(C).
    16. Bonan, Jacopo & Battiston, Pietro & Bleck, Jaimie & LeMay-Boucher, Philippe & Pareglio, Stefano & Sarr, Bassirou & Tavoni, Massimo, 2021. "Social interaction and technology adoption: Experimental evidence from improved cookstoves in Mali," World Development, Elsevier, vol. 144(C).
    17. Jacopo Bonan & Stefano Pareglio & Massimo Tavoni, 2014. "Access to Modern Energy: a Review of Impact Evaluations," Working Papers 2014.96, Fondazione Eni Enrico Mattei.
    18. Niklas Vahlne & Erik O. Ahlgren, 2014. "Energy Efficiency at the Base of the Pyramid: A System-Based Market Model for Improved Cooking Stove Adoption," Sustainability, MDPI, vol. 6(12), pages 1-21, November.
    19. Khandelwal, Meena & Hill, Matthew E. & Greenough, Paul & Anthony, Jerry & Quill, Misha & Linderman, Marc & Udaykumar, H.S., 2017. "Why Have Improved Cook-Stove Initiatives in India Failed?," World Development, Elsevier, vol. 92(C), pages 13-27.
    20. Faraz Usmani & Marc Jeuland & Subhrendu K. Pattanayak, 2018. "NGOs and the effectiveness of interventions," WIDER Working Paper Series wp-2018-59, World Institute for Development Economic Research (UNU-WIDER).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2213-:d:501727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.