IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p12261-d673568.html
   My bibliography  Save this article

Hydrogen-Rich Gas Produced by the Chemical Neutralization of Reactive By-Products from the Screening Processes of the Secondary Aluminum Industry

Author

Listed:
  • Roberto Ercoli

    (Dipartimento di Scienze Pure e Applicate, University of Urbino Carlo Bo, 61029 Urbino, Italy)

  • Andrea Orlando

    (CNR—Consiglio Nazionale delle Ricerche, Istituto di Geoscienze e Georisorse, 50121 Florence, Italy)

  • Daniele Borrini

    (Dipartimento di Scienze della Terra, University of Florence, 50121 Florence, Italy)

  • Franco Tassi

    (CNR—Consiglio Nazionale delle Ricerche, Istituto di Geoscienze e Georisorse, 50121 Florence, Italy
    Dipartimento di Scienze della Terra, University of Florence, 50121 Florence, Italy)

  • Gabriele Bicocchi

    (CNR—Consiglio Nazionale delle Ricerche, Istituto di Geoscienze e Georisorse, 50121 Florence, Italy
    Dipartimento di Scienze della Terra, University of Florence, 50121 Florence, Italy)

  • Alberto Renzulli

    (Dipartimento di Scienze Pure e Applicate, University of Urbino Carlo Bo, 61029 Urbino, Italy
    Geo.In.Tech. srl Spin Off, University of Urbino Carlo Bo, 61029 Urbino, Italy)

Abstract

In the framework of the industry of secondary aluminum, the chemical neutralization of highly reactive materials that come from the pre-treatment screening processes of scraps (beverage cans and domestic appliances) was investigated through experiments in aqueous alkaline solutions. Metallic aluminum-rich by-products are classified, according to EU law, as dangerous waste, as they can potentially develop flammable gases capable of forming explosive mixtures with air. In this way they cannot be disposed of in landfills for non-hazardous wastes if chemical neutralization is not planned and performed beforehand. In this way, these experiments were mainly aimed at unraveling the oxidation rate and at quantifying the production of hydrogen-rich gases from the reactions of the metallic aluminum-rich by-products in a water-rich alkaline (liquid or vapor) environment. Reactions were carried out in a stainless-steel batch mini-reactor with metering and sampling valves, with the resulting gases analyzed by gas-chromatography (GC). The experimental setup was planned to avoid the following issues: (i) the corrosion of the reactor by the alkaline solution and (ii) the permeability of the system to hydrogen (i.e., possible leaks of H 2 ), related to the fast kinetics and short duration of the reactions (which may hinder a pile-up-effect) between the solid by-products and the liquid. The procedure was defined by a controlled interaction process between metals and liquid, using NaOH to increase reaction rates. The experimental runs performed in the mini-reactor proved to be effective for eliminating the reactive metallic aluminum, reaching a maximum hydrogen production of 96% of the total gases produced in the experiments. The relations between gas generation (up to 55 bar of H 2 in the experiments, which lasted for four days) and each specific parameter variation are discussed. All the obtained results can be transferred and applied to (i) the possible industrialization of the method for the chemical neutralization of these dangerous by-products, increasing sustainability and workplace safety, (ii) the use of the resulting hydrogen as a source of energy for the furnaces of the secondary aluminum industry itself, and (iii) new technological materials (e.g., “foamed geopolymers”), by using hydrogen as a foaming agent, coupled with aluminosilicate materials, during geopolymeric reactions.

Suggested Citation

  • Roberto Ercoli & Andrea Orlando & Daniele Borrini & Franco Tassi & Gabriele Bicocchi & Alberto Renzulli, 2021. "Hydrogen-Rich Gas Produced by the Chemical Neutralization of Reactive By-Products from the Screening Processes of the Secondary Aluminum Industry," Sustainability, MDPI, vol. 13(21), pages 1-17, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12261-:d:673568
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/12261/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/12261/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shkolnikov, E.I. & Zhuk, A.Z. & Vlaskin, M.S., 2011. "Aluminum as energy carrier: Feasibility analysis and current technologies overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4611-4623.
    2. Blomberg, Jerry & Söderholm, Patrik, 2009. "The economics of secondary aluminium supply: An econometric analysis based on European data," Resources, Conservation & Recycling, Elsevier, vol. 53(8), pages 455-463.
    3. Gorazd Žibret & Klemen Teran & Lea Žibret & Katarina Šter & Sabina Dolenec, 2021. "Building of the Al-containing Secondary Raw Materials Registry for the Production of Low CO 2 Mineral Binders in South-Eastern European Region," Sustainability, MDPI, vol. 13(3), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olesya A. Buryakovskaya & Anna I. Kurbatova & Mikhail S. Vlaskin & George E. Valyano & Anatoly V. Grigorenko & Grayr N. Ambaryan & Aleksandr O. Dudoladov, 2022. "Waste to Hydrogen: Elaboration of Hydroreactive Materials from Magnesium-Aluminum Scrap," Sustainability, MDPI, vol. 14(8), pages 1-34, April.
    2. Mokhtar Ali Amrani & Yara Haddad & Firas Obeidat & Atef M. Ghaleb & Sobhi Mejjaouli & Ibrahim Rahoma & Mansour S. A. Galil & Mutahar Shameeri & Ahmed A. Alsofi & Amin Saif, 2022. "Productive and Sustainable H 2 Production from Waste Aluminum Using Copper Oxides-Based Graphene Nanocatalysts: A Techno-Economic Analysis," Sustainability, MDPI, vol. 14(22), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).
    2. Fu, Xinkai & Ueland, Stian M. & Olivetti, Elsa, 2017. "Econometric modeling of recycled copper supply," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 219-226.
    3. Ba, Bocar Samba & Soubeyran, Raphael, 2023. "Hotelling and recycling," Resource and Energy Economics, Elsevier, vol. 72(C).
    4. Söderholm, Patrik, 2011. "Taxing virgin natural resources: Lessons from aggregates taxation in Europe," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 911-922.
    5. Wang, Hongqi & Wang, Zhi & Shi, Zhihao & Gong, Xuzhong & Cao, Jianwei & Wang, Mingyong, 2017. "Facile hydrogen production from Al-water reaction promoted by choline hydroxide," Energy, Elsevier, vol. 131(C), pages 98-105.
    6. Jamey Davies & Stephanus P. Du Preez & Dmitri G. Bessarabov, 2022. "The Hydrolysis of Ball-Milled Aluminum–Bismuth–Nickel Composites for On-Demand Hydrogen Generation," Energies, MDPI, vol. 15(7), pages 1-22, March.
    7. Yang, Weijuan & Zhang, Tianyou & Liu, Jianzhong & Wang, Zhihua & Zhou, Junhu & Cen, Kefa, 2015. "Experimental researches on hydrogen generation by aluminum with adding lithium at high temperature," Energy, Elsevier, vol. 93(P1), pages 451-457.
    8. Zhang, Zhouyi & Song, Yi & Cheng, Jinhua & Zhang, Yijun, 2023. "Effects of heterogeneous ICT on critical metal supply: A differentiated perspective on primary and secondary supply," Resources Policy, Elsevier, vol. 83(C).
    9. Haller, Michel Y. & Amstad, Dominik & Dudita, Mihaela & Englert, Alexander & Häberle, Andreas, 2021. "Combined heat and power production based on renewable aluminium-water reaction," Renewable Energy, Elsevier, vol. 174(C), pages 879-893.
    10. Debiagi, P. & Rocha, R.C. & Scholtissek, A. & Janicka, J. & Hasse, C., 2022. "Iron as a sustainable chemical carrier of renewable energy: Analysis of opportunities and challenges for retrofitting coal-fired power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    11. Yang, Weijuan & Zhang, Tianyou & Zhou, Junhu & Shi, Wei & Liu, Jianzhong & Cen, Kefa, 2015. "Experimental study on the effect of low melting point metal additives on hydrogen production in the aluminum–water reaction," Energy, Elsevier, vol. 88(C), pages 537-543.
    12. Agliardi, Elettra & Kasioumi, Myrto, 2023. "Closing the loop in a duopolistic circular economy model," International Journal of Production Economics, Elsevier, vol. 262(C).
    13. Bergthorson, Jeffrey M. & Yavor, Yinon & Palecka, Jan & Georges, William & Soo, Michael & Vickery, James & Goroshin, Samuel & Frost, David L. & Higgins, Andrew J., 2017. "Metal-water combustion for clean propulsion and power generation," Applied Energy, Elsevier, vol. 186(P1), pages 13-27.
    14. Angus, A. & Casado, M. Rivas & Fitzsimons, D., 2012. "Exploring the usefulness of a simple linear regression model for understanding price movements of selected recycled materials in the UK," Resources, Conservation & Recycling, Elsevier, vol. 60(C), pages 10-19.
    15. Maas, Pascal & Schiemann, Martin & Scherer, Viktor & Fischer, Peter & Taroata, Dan & Schmid, Günther, 2018. "Lithium as energy carrier: CFD simulations of LI combustion in a 100MW slag tap furnace," Applied Energy, Elsevier, vol. 227(C), pages 506-515.
    16. Bergthorson, J.M. & Goroshin, S. & Soo, M.J. & Julien, P. & Palecka, J. & Frost, D.L. & Jarvis, D.J., 2015. "Direct combustion of recyclable metal fuels for zero-carbon heat and power," Applied Energy, Elsevier, vol. 160(C), pages 368-382.
    17. Dace, Elina & Bazbauers, Gatis & Berzina, Alise & Davidsen, Pål I., 2014. "System dynamics model for analyzing effects of eco-design policy on packaging waste management system," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 175-190.
    18. Su, Ming & Hu, Haiping & Gan, Jianchang & Ye, Wenhua & Zhang, Wenhua & Wang, Huihu, 2021. "Thermodynamics, kinetics and reaction mechanism of hydrogen production from a novel Al alloy/NaCl/g-C3N4 composite by low temperature hydrolysis," Energy, Elsevier, vol. 218(C).
    19. Sevigné-Itoiz, Eva & Gasol, Carles M. & Rieradevall, Joan & Gabarrell, Xavier, 2014. "Environmental consequences of recycling aluminum old scrap in a global market," Resources, Conservation & Recycling, Elsevier, vol. 89(C), pages 94-103.
    20. Feng, Shan & Yang, Guandong & Zheng, Dawei & Rauf, Abdur & Khan, Ubaid & Cheng, Rui & Wang, Lei & Wang, Wentao & Liu, Fude, 2022. "A high-performance tri-electrolyte aluminum-air microfluidic cell with a co-laminar-flow-and-bridging-electrolyte configuration," Applied Energy, Elsevier, vol. 307(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12261-:d:673568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.