IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p8908-d611242.html
   My bibliography  Save this article

Impact of Express Delivery Industry’s Development on Transportation Sector’s Carbon Emissions: An Empirical Analysis from China

Author

Listed:
  • Chang Zhao

    (College of Public Administration, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Boya Zhou

    (School of Public Administration, Zhongnan University of Economics and Law, Wuhan 430073, China)

Abstract

In recent years, China’s express delivery industry has developed rapidly. According to a rough estimate in this paper, carbon emissions caused by express parcel transportation in China account for 1/7 of the transportation sector’s carbon emissions. However, considering the possibility of a scale effect, it is unclear whether the express delivery industry’s development will inevitably lead to more carbon emissions. Therefore, this paper uses the panel data of 30 Chinese provinces from 2008 to 2017 to explore the complex relationship between the express delivery industry’s development and the transportation sector’s carbon emissions, and also conducts regional heterogeneity analysis. The main findings are as follows: (1) There is a significant U-shaped relationship between per capita express delivery amounts and the transportation sector’s CO 2 emissions, especially in the Central region. (2) At the national level, the number of per capita postal outlets significantly promotes the transportation sector’s CO 2 emissions. (3) The impact caused by the number of per capita postal workers varies regionally. Increasing postal worker numbers in the Western region can significantly reduce carbon emissions, while the result in the Central region is the opposite. (4) The Express Comprehensive Development Index (ECDI) has a significant U-shaped effect on the transportation sector’s carbon emissions at the national and sub-regional level.

Suggested Citation

  • Chang Zhao & Boya Zhou, 2021. "Impact of Express Delivery Industry’s Development on Transportation Sector’s Carbon Emissions: An Empirical Analysis from China," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8908-:d:611242
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/8908/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/8908/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barenji, Ali Vatankhah & Wang, W.M. & Li, Zhi & Guerra-Zubiaga, David A., 2019. "Intelligent E-commerce logistics platform using hybrid agent based approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 15-31.
    2. Liu, Xiaochen & Sweeney, John, 2012. "Modelling the impact of urban form on household energy demand and related CO2 emissions in the Greater Dublin Region," Energy Policy, Elsevier, vol. 46(C), pages 359-369.
    3. Chen, Yulong & Zhao, Jincai & Lai, Zhizhu & Wang, Zheng & Xia, Haibin, 2019. "Exploring the effects of economic growth, and renewable and non-renewable energy consumption on China’s CO2 emissions: Evidence from a regional panel analysis," Renewable Energy, Elsevier, vol. 140(C), pages 341-353.
    4. Lu, I.J. & Lin, Sue J. & Lewis, Charles, 2007. "Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea," Energy Policy, Elsevier, vol. 35(6), pages 3226-3235, June.
    5. Y Bouchery & Jan C Fransoo, 2015. "Cost, carbon emissions and modal shift in intermodal network design decisions," Post-Print hal-01954452, HAL.
    6. Zhang, Guoxing & Deng, Nana & Mou, Haizhen & Zhang, Zhe George & Chen, Xiaofeng, 2019. "The impact of the policy and behavior of public participation on environmental governance performance: Empirical analysis based on provincial panel data in China," Energy Policy, Elsevier, vol. 129(C), pages 1347-1354.
    7. Neng Shen & Yuqing Zhao & Qunwei Wang, 2018. "Diversified Agglomeration, Specialized Agglomeration, and Emission Reduction Effect—A Nonlinear Test Based on Chinese City Data," Sustainability, MDPI, vol. 10(6), pages 1-22, June.
    8. Zhang, Xuemei & Zhou, Gengui & Cao, Jian & Wu, Anqi, 2020. "Evolving strategies of e-commerce and express delivery enterprises with public supervision," Research in Transportation Economics, Elsevier, vol. 80(C).
    9. Zhang, Chuanguo & Nian, Jiang, 2013. "Panel estimation for transport sector CO2 emissions and its affecting factors: A regional analysis in China," Energy Policy, Elsevier, vol. 63(C), pages 918-926.
    10. Jesse W.J. Weltevreden & Ton Van Rietbergen, 2007. "E‐Shopping Versus City Centre Shopping: The Role Of Perceived City Centre Attractiveness," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 98(1), pages 68-85, February.
    11. Shao, Saijun & Xu, Gangyan & Li, Ming & Huang, George Q., 2019. "Synchronizing e-commerce city logistics with sliding time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 17-28.
    12. Gorus, Muhammed Sehid & Aydin, Mucahit, 2019. "The relationship between energy consumption, economic growth, and CO2 emission in MENA countries: Causality analysis in the frequency domain," Energy, Elsevier, vol. 168(C), pages 815-822.
    13. Li, Wenbo & Long, Ruyin & Chen, Hong & Geng, Jichao, 2017. "A review of factors influencing consumer intentions to adopt battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 318-328.
    14. Du, Huibin & Chen, Zhenni & Peng, Binbin & Southworth, Frank & Ma, Shoufeng & Wang, Yuan, 2019. "What drives CO2 emissions from the transport sector? A linkage analysis," Energy, Elsevier, vol. 175(C), pages 195-204.
    15. Bouchery, Yann & Fransoo, Jan, 2015. "Cost, carbon emissions and modal shift in intermodal network design decisions," International Journal of Production Economics, Elsevier, vol. 164(C), pages 388-399.
    16. Chen, Hong & Long, Ruyin & Niu, Wenjing & Feng, Qun & Yang, Ranran, 2014. "How does individual low-carbon consumption behavior occur? – An analysis based on attitude process," Applied Energy, Elsevier, vol. 116(C), pages 376-386.
    17. Behnke, Martin & Kirschstein, Thomas, 2017. "The impact of path selection on GHG emissions in city logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 320-336.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maiyar, Lohithaksha M. & Thakkar, Jitesh J., 2019. "Modelling and analysis of intermodal food grain transportation under hub disruption towards sustainability," International Journal of Production Economics, Elsevier, vol. 217(C), pages 281-297.
    2. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. De Moor, Bram J. & Creemers, Stefan & Boute, Robert N., 2023. "Breaking truck dominance in supply chains: Proactive freight consolidation and modal split transport," International Journal of Production Economics, Elsevier, vol. 257(C).
    4. Xiaohang Ren & Cheng Cheng & Zhen Wang & Cheng Yan, 2021. "Spillover and dynamic effects of energy transition and economic growth on carbon dioxide emissions for the European Union: A dynamic spatial panel model," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 228-242, January.
    5. Marques, António Cardoso & Junqueira, Thibaut Manuel, 2022. "European energy transition: Decomposing the performance of nuclear power," Energy, Elsevier, vol. 245(C).
    6. Shahnazi, Rouhollah & Dehghan Shabani, Zahra, 2021. "The effects of renewable energy, spatial spillover of CO2 emissions and economic freedom on CO2 emissions in the EU," Renewable Energy, Elsevier, vol. 169(C), pages 293-307.
    7. Ralf Elbert & Lowis Seikowsky, 2017. "The influences of behavioral biases, barriers and facilitators on the willingness of forwarders’ decision makers to modal shift from unimodal road freight transport to intermodal road–rail freight tra," Journal of Business Economics, Springer, vol. 87(8), pages 1083-1123, November.
    8. Fan, Yee Van & Klemeš, Jiří Jaromír & Walmsley, Timothy Gordon & Perry, Simon, 2019. "Minimising energy consumption and environmental burden of freight transport using a novel graphical decision-making tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    9. Snežana Tadić & Mladen Krstić & Milovan Kovač, 2023. "Assessment of city logistics initiative categories sustainability: case of Belgrade," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1383-1419, February.
    10. Damian Bonk & Sylwia Kowalska, 2020. "Modal Choice Preferences in Inland Container Transport in Poland," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 2), pages 99-109.
    11. Bouchery, Yann & Woxenius, Johan & Fransoo, Jan C., 2020. "Identifying the market areas of port-centric logistics and hinterland intermodal transportation," European Journal of Operational Research, Elsevier, vol. 285(2), pages 599-611.
    12. Yanan Wang & Wei Chen & Minjuan Zhao & Bowen Wang, 2019. "Analysis of the influencing factors on CO2 emissions at different urbanization levels: regional difference in China based on panel estimation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 627-645, March.
    13. Volha Yakavenka & Ioannis Mallidis & Dimitrios Vlachos & Eleftherios Iakovou & Zafeiriou Eleni, 2020. "Development of a multi-objective model for the design of sustainable supply chains: the case of perishable food products," Annals of Operations Research, Springer, vol. 294(1), pages 593-621, November.
    14. Kurtuluş, Ercan & Çetin, İsmail Bilge, 2020. "Analysis of modal shift potential towards intermodal transportation in short-distance inland container transport," Transport Policy, Elsevier, vol. 89(C), pages 24-37.
    15. Mengjie Zhang & Lei Wang & Huanhuan Feng & Luwei Zhang & Xiaoshuan Zhang & Jun Li, 2020. "Modeling Method for Cost and Carbon Emission of Sheep Transportation Based on Path Optimization," Sustainability, MDPI, vol. 12(3), pages 1-23, January.
    16. Snežana Tadić & Milovan Kovač & Mladen Krstić & Violeta Roso & Nikolina Brnjac, 2021. "The Selection of Intermodal Transport System Scenarios in the Function of Southeastern Europe Regional Development," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    17. Yang, Shu & Cheng, Peng & Li, Jun & Wang, Shanyong, 2019. "Which group should policies target? Effects of incentive policies and product cognitions for electric vehicle adoption among Chinese consumers," Energy Policy, Elsevier, vol. 135(C).
    18. Basallo-Triana, Mario José & Bravo-Bastidas, Juan José & Contreras, Ivan & Cordeau, Jean-François & Vidal-Holguín, Carlos Julio, 2023. "Intermodal hub network design with generalized capacity constraints and non-synchronized train–truck operations," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    19. Song, Yan & Zhang, Ming & Shan, Cheng, 2019. "Research on the decoupling trend and mitigation potential of CO2 emissions from China's transport sector," Energy, Elsevier, vol. 183(C), pages 837-843.
    20. Hu, Qiaolin & Gu, Weihua & Wang, Shuaian, 2022. "Optimal subsidy scheme design for promoting intermodal freight transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8908-:d:611242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.