IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i8p3373-d348305.html
   My bibliography  Save this article

Water and CSP—Linking CSP Water Demand Models and National Hydrology Data to Sustainably Manage CSP Development and Water Resources in Arid Regions

Author

Listed:
  • D. Frank Duvenhage

    (Engineering Management and Sustainable Systems, Department of Industrial Engineering, the Solar Thermal Energy Research Group and the Centre for Renewable and Sustainable Energy Studies, Stellenbosch University, Stellenbosch 7602, South Africa)

  • Alan C. Brent

    (Engineering Management and Sustainable Systems, Department of Industrial Engineering, the Solar Thermal Energy Research Group and the Centre for Renewable and Sustainable Energy Studies, Stellenbosch University, Stellenbosch 7602, South Africa
    Renewable Energy Systems Engineering, School of Engineering and Computer Science, Victoria University of Wellington, Wellington 6140, New Zealand)

  • William H.L. Stafford

    (Engineering Management and Sustainable Systems, Department of Industrial Engineering, the Solar Thermal Energy Research Group and the Centre for Renewable and Sustainable Energy Studies, Stellenbosch University, Stellenbosch 7602, South Africa
    Green Economy Solutions, Natural Resources and the Environment Unit, Council for Scientific and Industrial Research, Stellenbosch 7600, South Africa)

  • S. Grobbelaar

    (Department of Industrial Engineering, Stellenbosch University, Stellenbosch 7602, South Africa)

Abstract

A systematic approach to evaluate Concentrating Solar Power (CSP) plant fleet deployment and sustainable water resource use in arid regions is presented. An overview is given of previous work carried out. Once CSP development scenarios, suitable areas for development, and the water demand from CSP operations were evaluated, appropriate spatiotemporal CSP performance models were developed. The resulting consumptive patterns and the impact of variable resource availability on CSP plant operation are analysed. This evaluation considered the whole of South Africa, with focus on the areas identified as suitable for CSP, in order to study the impact on local water resources. It was found that the hydrological limitations imposed by variable water resources on CSP development are severe. The national annual theoretical net generation potential of wet-cooled Parabolic Trough decreased from 11,277 to 120 TWh, and that of wet-cooled Central Receiver decreased from 12,003 to 170 TWh. Dry cooled versions also experience severe limitations, but to a lesser extent—the national annual theoretical net generation potential of Parabolic Trough decreased from 11,038 to 512 TWh, and that of Central Receiver decreased from 11,824 to 566 TWh. Accordingly, policy guidelines are suggested for sustainable CSP development and water resource management within the context of current South African water use regulation.

Suggested Citation

  • D. Frank Duvenhage & Alan C. Brent & William H.L. Stafford & S. Grobbelaar, 2020. "Water and CSP—Linking CSP Water Demand Models and National Hydrology Data to Sustainably Manage CSP Development and Water Resources in Arid Regions," Sustainability, MDPI, vol. 12(8), pages 1-32, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3373-:d:348305
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/8/3373/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/8/3373/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khan, Zarrar & Linares, Pedro & García-González, Javier, 2017. "Integrating water and energy models for policy driven applications. A review of contemporary work and recommendations for future developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1123-1138.
    2. Liu, Lu & Hejazi, Mohamad & Patel, Pralit & Kyle, Page & Davies, Evan & Zhou, Yuyu & Clarke, Leon & Edmonds, James, 2015. "Water demands for electricity generation in the U.S.: Modeling different scenarios for the water–energy nexus," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 318-334.
    3. Duvenhage, D. Frank & Brent, Alan C. & Stafford, William H.L., 2019. "The need to strategically manage CSP fleet development and water resources: A structured review and way forward," Renewable Energy, Elsevier, vol. 132(C), pages 813-825.
    4. Colmenar-Santos, Antonio & Borge-Diez, David & Molina, Clara Pérez & Castro-Gil, Manuel, 2014. "Water consumption in solar parabolic trough plants: review and analysis of the southern Spain case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 565-577.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dries. Frank Duvenhage & Alan C. Brent & William H.L. Stafford & Dean Van Den Heever, 2020. "Optimising the Concentrating Solar Power Potential in South Africa through an Improved GIS Analysis," Energies, MDPI, vol. 13(12), pages 1-10, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Liu & Yongping Li & Guohe Huang & Cai Suo & Shuo Yin, 2017. "An Interval Fuzzy-Stochastic Chance-Constrained Programming Based Energy-Water Nexus Model for Planning Electric Power Systems," Energies, MDPI, vol. 10(11), pages 1-23, November.
    2. Boukelia, T.E. & Ghellab, A. & Laouafi, A. & Bouraoui, A. & Kabar, Y., 2020. "Cooling performances time series of CSP plants: Calculation and analysis using regression and ANN models," Renewable Energy, Elsevier, vol. 157(C), pages 809-827.
    3. Wang, Peng & Huang, Ren & Zhang, Sufang & Liu, Xiaoli, 2023. "Pathways of carbon emissions reduction under the water-energy constraint: A case study of Beijing in China," Energy Policy, Elsevier, vol. 173(C).
    4. Koh, Rachel & Kern, Jordan & Galelli, Stefano, 2022. "Hard-coupling water and power system models increases the complementarity of renewable energy sources," Applied Energy, Elsevier, vol. 321(C).
    5. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    6. Zamanipour, Behzad & Ghadaksaz, Hesam & Keppo, Ilkka & Saboohi, Yadollah, 2023. "Electricity supply and demand dynamics in Iran considering climate change-induced stresses," Energy, Elsevier, vol. 263(PE).
    7. Elena Helerea & Marius D. Calin & Cristian Musuroi, 2023. "Water Energy Nexus and Energy Transition—A Review," Energies, MDPI, vol. 16(4), pages 1-31, February.
    8. Alireza Taghdisian & Sandra G. F. Bukkens & Mario Giampietro, 2022. "A Societal Metabolism Approach to Effectively Analyze the Water–Energy–Food Nexus in an Agricultural Transboundary River Basin," Sustainability, MDPI, vol. 14(15), pages 1-25, July.
    9. Guerra, Omar J. & Reklaitis, Gintaras V., 2018. "Advances and challenges in water management within energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4009-4019.
    10. Boukelia, T.E. & Bouraoui, A. & Laouafi, A. & Djimli, S. & Kabar, Y., 2020. "3E (Energy-Exergy-Economic) comparative study of integrating wet and dry cooling systems in solar tower power plants," Energy, Elsevier, vol. 200(C).
    11. Zeyang Bian & Dan Liu, 2021. "A Comprehensive Review on Types, Methods and Different Regions Related to Water–Energy–Food Nexus," IJERPH, MDPI, vol. 18(16), pages 1-24, August.
    12. Samrena Jabeen & Subha Malik & Soha Khan & Nohman Khan & Muhammad Imran Qureshi & Mohd Shamsuri Md Saad, 2021. "A Comparative Systematic Literature Review and Bibliometric Analysis on Sustainability of Renewable Energy Sources," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 270-280.
    13. Roberto Gomes Cavalcante Júnior & Marcos Aurélio Vasconcelos Freitas & Neilton Fidelis da Silva & Franklin Rocha de Azevedo Filho, 2019. "Sustainable Groundwater Exploitation Aiming at the Reduction of Water Vulnerability in the Brazilian Semi-Arid Region," Energies, MDPI, vol. 12(5), pages 1-20, March.
    14. Zhai, Haibo & Rubin, Edward S. & Grol, Eric J. & O'Connell, Andrew C. & Wu, Zitao & Lewis, Eric G., 2022. "Dry cooling retrofits at existing fossil fuel-fired power plants in a water-stressed region: Tradeoffs in water savings, cost, and capacity shortfalls," Applied Energy, Elsevier, vol. 306(PA).
    15. Palenzuela, Patricia & Roca, Lidia & Asfand, Faisal & Patchigolla, Kumar, 2022. "Experimental assessment of a pilot scale hybrid cooling system for water consumption reduction in CSP plants," Energy, Elsevier, vol. 242(C).
    16. Dries. Frank Duvenhage & Alan C. Brent & William H.L. Stafford & Dean Van Den Heever, 2020. "Optimising the Concentrating Solar Power Potential in South Africa through an Improved GIS Analysis," Energies, MDPI, vol. 13(12), pages 1-10, June.
    17. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    18. Elisabeth Viles & Javier Santos & Andrés Muñoz-Villamizar & Paloma Grau & Tamara Fernández-Arévalo, 2021. "Lean–Green Improvement Opportunities for Sustainable Manufacturing Using Water Telemetry in Agri-Food Industry," Sustainability, MDPI, vol. 13(4), pages 1-12, February.
    19. Teotónio, Carla & Rodríguez, Miguel & Roebeling, Peter & Fortes, Patrícia, 2020. "Water competition through the ‘water-energy’ nexus: Assessing the economic impacts of climate change in a Mediterranean context," Energy Economics, Elsevier, vol. 85(C).
    20. Giampietro, Mario, 2019. "On the Circular Bioeconomy and Decoupling: Implications for Sustainable Growth," Ecological Economics, Elsevier, vol. 162(C), pages 143-156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3373-:d:348305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.